anything-llm/server/utils/AiProviders/cohere/index.js

257 lines
7.4 KiB
JavaScript
Raw Normal View History

const { v4 } = require("uuid");
const { writeResponseChunk } = require("../../helpers/chat/responses");
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
const { MODEL_MAP } = require("../modelMap");
const {
LLMPerformanceMonitor,
} = require("../../helpers/chat/LLMPerformanceMonitor");
class CohereLLM {
constructor(embedder = null) {
const { CohereClient } = require("cohere-ai");
if (!process.env.COHERE_API_KEY)
throw new Error("No Cohere API key was set.");
const cohere = new CohereClient({
token: process.env.COHERE_API_KEY,
});
this.cohere = cohere;
this.model = process.env.COHERE_MODEL_PREF;
this.limits = {
history: this.promptWindowLimit() * 0.15,
system: this.promptWindowLimit() * 0.15,
user: this.promptWindowLimit() * 0.7,
};
this.embedder = embedder ?? new NativeEmbedder();
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
#convertChatHistoryCohere(chatHistory = []) {
let cohereHistory = [];
chatHistory.forEach((message) => {
switch (message.role) {
case "system":
cohereHistory.push({ role: "SYSTEM", message: message.content });
break;
case "user":
cohereHistory.push({ role: "USER", message: message.content });
break;
case "assistant":
cohereHistory.push({ role: "CHATBOT", message: message.content });
break;
}
});
return cohereHistory;
}
streamingEnabled() {
return "streamGetChatCompletion" in this;
}
static promptWindowLimit(modelName) {
return MODEL_MAP.cohere[modelName] ?? 4_096;
}
promptWindowLimit() {
return MODEL_MAP.cohere[this.model] ?? 4_096;
}
async isValidChatCompletionModel(model = "") {
const validModels = [
"command-r",
"command-r-plus",
"command",
"command-light",
"command-nightly",
"command-light-nightly",
];
return validModels.includes(model);
}
constructPrompt({
systemPrompt = "",
contextTexts = [],
chatHistory = [],
userPrompt = "",
}) {
const prompt = {
role: "system",
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`Cohere chat: ${this.model} is not valid for chat completion!`
);
const message = messages[messages.length - 1].content; // Get the last message
const cohereHistory = this.#convertChatHistoryCohere(messages.slice(0, -1)); // Remove the last message and convert to Cohere
const result = await LLMPerformanceMonitor.measureAsyncFunction(
this.cohere.chat({
model: this.model,
message: message,
chatHistory: cohereHistory,
temperature,
})
);
if (
!result.output.hasOwnProperty("text") ||
result.output.text.length === 0
)
return null;
const promptTokens = result.output.meta?.tokens?.inputTokens || 0;
const completionTokens = result.output.meta?.tokens?.outputTokens || 0;
return {
textResponse: result.output.text,
metrics: {
prompt_tokens: promptTokens,
completion_tokens: completionTokens,
total_tokens: promptTokens + completionTokens,
outputTps: completionTokens / result.duration,
duration: result.duration,
},
};
}
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`Cohere chat: ${this.model} is not valid for chat completion!`
);
const message = messages[messages.length - 1].content; // Get the last message
const cohereHistory = this.#convertChatHistoryCohere(messages.slice(0, -1)); // Remove the last message and convert to Cohere
const measuredStreamRequest = await LLMPerformanceMonitor.measureStream(
this.cohere.chatStream({
model: this.model,
message: message,
chatHistory: cohereHistory,
temperature,
}),
messages,
false
);
return measuredStreamRequest;
}
/**
* Handles the stream response from the Cohere API.
* @param {Object} response - the response object
* @param {import('../../helpers/chat/LLMPerformanceMonitor').MonitoredStream} stream - the stream response from the Cohere API w/tracking
* @param {Object} responseProps - the response properties
* @returns {Promise<string>}
*/
async handleStream(response, stream, responseProps) {
return new Promise(async (resolve) => {
const { uuid = v4(), sources = [] } = responseProps;
let fullText = "";
let usage = {
prompt_tokens: 0,
completion_tokens: 0,
};
const handleAbort = () => {
writeResponseChunk(response, {
uuid,
sources,
type: "abort",
textResponse: fullText,
close: true,
error: false,
});
response.removeListener("close", handleAbort);
stream.endMeasurement(usage);
resolve(fullText);
};
response.on("close", handleAbort);
try {
for await (const chat of stream) {
if (chat.eventType === "stream-end") {
const usageMetrics = chat?.response?.meta?.tokens || {};
usage.prompt_tokens = usageMetrics.inputTokens || 0;
usage.completion_tokens = usageMetrics.outputTokens || 0;
}
if (chat.eventType === "text-generation") {
const text = chat.text;
fullText += text;
writeResponseChunk(response, {
uuid,
sources,
type: "textResponseChunk",
textResponse: text,
close: false,
error: false,
});
}
}
writeResponseChunk(response, {
uuid,
sources,
type: "textResponseChunk",
textResponse: "",
close: true,
error: false,
});
response.removeListener("close", handleAbort);
stream.endMeasurement(usage);
resolve(fullText);
} catch (error) {
writeResponseChunk(response, {
uuid,
sources,
type: "abort",
textResponse: null,
close: true,
error: error.message,
});
response.removeListener("close", handleAbort);
stream.endMeasurement(usage);
resolve(fullText);
}
});
}
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
async embedTextInput(textInput) {
return await this.embedder.embedTextInput(textInput);
}
async embedChunks(textChunks = []) {
return await this.embedder.embedChunks(textChunks);
}
async compressMessages(promptArgs = {}, rawHistory = []) {
const { messageArrayCompressor } = require("../../helpers/chat");
const messageArray = this.constructPrompt(promptArgs);
return await messageArrayCompressor(this, messageArray, rawHistory);
}
}
module.exports = {
CohereLLM,
};