anything-llm/server/utils/AiProviders/openRouter/index.js

500 lines
16 KiB
JavaScript
Raw Normal View History

const { NativeEmbedder } = require("../../EmbeddingEngines/native");
const { v4: uuidv4 } = require("uuid");
const {
writeResponseChunk,
clientAbortedHandler,
formatChatHistory,
} = require("../../helpers/chat/responses");
const fs = require("fs");
const path = require("path");
const { safeJsonParse } = require("../../http");
const {
LLMPerformanceMonitor,
} = require("../../helpers/chat/LLMPerformanceMonitor");
const cacheFolder = path.resolve(
process.env.STORAGE_DIR
? path.resolve(process.env.STORAGE_DIR, "models", "openrouter")
: path.resolve(__dirname, `../../../storage/models/openrouter`)
);
class OpenRouterLLM {
constructor(embedder = null, modelPreference = null) {
if (!process.env.OPENROUTER_API_KEY)
throw new Error("No OpenRouter API key was set.");
const { OpenAI: OpenAIApi } = require("openai");
this.basePath = "https://openrouter.ai/api/v1";
this.openai = new OpenAIApi({
baseURL: this.basePath,
apiKey: process.env.OPENROUTER_API_KEY ?? null,
defaultHeaders: {
"HTTP-Referer": "https://anythingllm.com",
"X-Title": "AnythingLLM",
},
});
this.model =
modelPreference || process.env.OPENROUTER_MODEL_PREF || "openrouter/auto";
this.limits = {
history: this.promptWindowLimit() * 0.15,
system: this.promptWindowLimit() * 0.15,
user: this.promptWindowLimit() * 0.7,
};
this.embedder = embedder ?? new NativeEmbedder();
this.defaultTemp = 0.7;
this.timeout = this.#parseTimeout();
if (!fs.existsSync(cacheFolder))
fs.mkdirSync(cacheFolder, { recursive: true });
this.cacheModelPath = path.resolve(cacheFolder, "models.json");
this.cacheAtPath = path.resolve(cacheFolder, ".cached_at");
this.log("Initialized with model:", this.model);
}
log(text, ...args) {
console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args);
}
/**
* OpenRouter has various models that never return `finish_reasons` and thus leave the stream open
* which causes issues in subsequent messages. This timeout value forces us to close the stream after
* x milliseconds. This is a configurable value via the OPENROUTER_TIMEOUT_MS value
* @returns {number} The timeout value in milliseconds (default: 500)
*/
#parseTimeout() {
this.log(
`OpenRouter timeout is set to ${process.env.OPENROUTER_TIMEOUT_MS ?? 500}ms`
);
if (isNaN(Number(process.env.OPENROUTER_TIMEOUT_MS))) return 500;
const setValue = Number(process.env.OPENROUTER_TIMEOUT_MS);
if (setValue < 500) return 500;
return setValue;
}
// This checks if the .cached_at file has a timestamp that is more than 1Week (in millis)
// from the current date. If it is, then we will refetch the API so that all the models are up
// to date.
#cacheIsStale() {
const MAX_STALE = 6.048e8; // 1 Week in MS
if (!fs.existsSync(this.cacheAtPath)) return true;
const now = Number(new Date());
const timestampMs = Number(fs.readFileSync(this.cacheAtPath));
return now - timestampMs > MAX_STALE;
}
// The OpenRouter model API has a lot of models, so we cache this locally in the directory
// as if the cache directory JSON file is stale or does not exist we will fetch from API and store it.
// This might slow down the first request, but we need the proper token context window
// for each model and this is a constructor property - so we can really only get it if this cache exists.
// We used to have this as a chore, but given there is an API to get the info - this makes little sense.
async #syncModels() {
if (fs.existsSync(this.cacheModelPath) && !this.#cacheIsStale())
return false;
this.log(
"Model cache is not present or stale. Fetching from OpenRouter API."
);
await fetchOpenRouterModels();
return;
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
models() {
if (!fs.existsSync(this.cacheModelPath)) return {};
return safeJsonParse(
fs.readFileSync(this.cacheModelPath, { encoding: "utf-8" }),
{}
);
}
streamingEnabled() {
return "streamGetChatCompletion" in this;
}
static promptWindowLimit(modelName) {
const cacheModelPath = path.resolve(cacheFolder, "models.json");
const availableModels = fs.existsSync(cacheModelPath)
? safeJsonParse(
fs.readFileSync(cacheModelPath, { encoding: "utf-8" }),
{}
)
: {};
return availableModels[modelName]?.maxLength || 4096;
}
promptWindowLimit() {
const availableModels = this.models();
return availableModels[this.model]?.maxLength || 4096;
}
async isValidChatCompletionModel(model = "") {
await this.#syncModels();
const availableModels = this.models();
return availableModels.hasOwnProperty(model);
}
/**
* Generates appropriate content array for a message + attachments.
* @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}}
* @returns {string|object[]}
*/
#generateContent({ userPrompt, attachments = [] }) {
if (!attachments.length) {
return userPrompt;
}
const content = [{ type: "text", text: userPrompt }];
for (let attachment of attachments) {
content.push({
type: "image_url",
image_url: {
url: attachment.contentString,
detail: "auto",
},
});
}
return content.flat();
}
/**
* Parses and prepends reasoning from the response and returns the full text response.
* @param {Object} response
* @returns {string}
*/
#parseReasoningFromResponse({ message }) {
let textResponse = message?.content;
if (!!message?.reasoning && message.reasoning.trim().length > 0)
textResponse = `<think>${message.reasoning}</think>${textResponse}`;
return textResponse;
}
constructPrompt({
systemPrompt = "",
contextTexts = [],
chatHistory = [],
userPrompt = "",
attachments = [],
}) {
const prompt = {
role: "system",
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
return [
prompt,
...formatChatHistory(chatHistory, this.#generateContent),
{
role: "user",
content: this.#generateContent({ userPrompt, attachments }),
},
];
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`OpenRouter chat: ${this.model} is not valid for chat completion!`
);
const result = await LLMPerformanceMonitor.measureAsyncFunction(
this.openai.chat.completions
.create({
model: this.model,
messages,
temperature,
// This is an OpenRouter specific option that allows us to get the reasoning text
// before the token text.
include_reasoning: true,
})
.catch((e) => {
throw new Error(e.message);
})
);
if (
!result?.output?.hasOwnProperty("choices") ||
result?.output?.choices?.length === 0
)
throw new Error(
`Invalid response body returned from OpenRouter: ${result.output?.error?.message || "Unknown error"} ${result.output?.error?.code || "Unknown code"}`
);
return {
textResponse: this.#parseReasoningFromResponse(result.output.choices[0]),
metrics: {
prompt_tokens: result.output.usage.prompt_tokens || 0,
completion_tokens: result.output.usage.completion_tokens || 0,
total_tokens: result.output.usage.total_tokens || 0,
outputTps: result.output.usage.completion_tokens / result.duration,
duration: result.duration,
},
};
}
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`OpenRouter chat: ${this.model} is not valid for chat completion!`
);
const measuredStreamRequest = await LLMPerformanceMonitor.measureStream(
this.openai.chat.completions.create({
model: this.model,
stream: true,
messages,
temperature,
// This is an OpenRouter specific option that allows us to get the reasoning text
// before the token text.
include_reasoning: true,
}),
messages
// We have to manually count the tokens
// OpenRouter has a ton of providers and they all can return slightly differently
// some return chunk.usage on STOP, some do it after stop, its inconsistent.
// So it is possible reported metrics are inaccurate since we cannot reliably
// catch the metrics before resolving the stream - so we just pretend this functionality
// is not available.
);
return measuredStreamRequest;
}
/**
* Handles the default stream response for a chat.
* @param {import("express").Response} response
* @param {import('../../helpers/chat/LLMPerformanceMonitor').MonitoredStream} stream
* @param {Object} responseProps
* @returns {Promise<string>}
*/
handleStream(response, stream, responseProps) {
const timeoutThresholdMs = this.timeout;
const { uuid = uuidv4(), sources = [] } = responseProps;
return new Promise(async (resolve) => {
let fullText = "";
let reasoningText = "";
let lastChunkTime = null; // null when first token is still not received.
// Establish listener to early-abort a streaming response
// in case things go sideways or the user does not like the response.
// We preserve the generated text but continue as if chat was completed
// to preserve previously generated content.
const handleAbort = () => {
stream?.endMeasurement({
completion_tokens: LLMPerformanceMonitor.countTokens(fullText),
});
clientAbortedHandler(resolve, fullText);
};
response.on("close", handleAbort);
// NOTICE: Not all OpenRouter models will return a stop reason
// which keeps the connection open and so the model never finalizes the stream
// like the traditional OpenAI response schema does. So in the case the response stream
// never reaches a formal close state we maintain an interval timer that if we go >=timeoutThresholdMs with
// no new chunks then we kill the stream and assume it to be complete. OpenRouter is quite fast
// so this threshold should permit most responses, but we can adjust `timeoutThresholdMs` if
// we find it is too aggressive.
const timeoutCheck = setInterval(() => {
if (lastChunkTime === null) return;
const now = Number(new Date());
const diffMs = now - lastChunkTime;
if (diffMs >= timeoutThresholdMs) {
console.log(
`OpenRouter stream did not self-close and has been stale for >${timeoutThresholdMs}ms. Closing response stream.`
);
writeResponseChunk(response, {
uuid,
sources,
type: "textResponseChunk",
textResponse: "",
close: true,
error: false,
});
clearInterval(timeoutCheck);
response.removeListener("close", handleAbort);
stream?.endMeasurement({
completion_tokens: LLMPerformanceMonitor.countTokens(fullText),
});
resolve(fullText);
}
}, 500);
try {
for await (const chunk of stream) {
const message = chunk?.choices?.[0];
const token = message?.delta?.content;
const reasoningToken = message?.delta?.reasoning;
lastChunkTime = Number(new Date());
// Reasoning models will always return the reasoning text before the token text.
// can be null or ''
if (reasoningToken) {
// If the reasoning text is empty (''), we need to initialize it
// and send the first chunk of reasoning text.
if (reasoningText.length === 0) {
writeResponseChunk(response, {
uuid,
sources: [],
type: "textResponseChunk",
textResponse: `<think>${reasoningToken}`,
close: false,
error: false,
});
reasoningText += `<think>${reasoningToken}`;
continue;
} else {
// If the reasoning text is not empty, we need to append the reasoning text
// to the existing reasoning text.
writeResponseChunk(response, {
uuid,
sources: [],
type: "textResponseChunk",
textResponse: reasoningToken,
close: false,
error: false,
});
reasoningText += reasoningToken;
}
}
// If the reasoning text is not empty, but the reasoning token is empty
// and the token text is not empty we need to close the reasoning text and begin sending the token text.
if (!!reasoningText && !reasoningToken && token) {
writeResponseChunk(response, {
uuid,
sources: [],
type: "textResponseChunk",
textResponse: `</think>`,
close: false,
error: false,
});
fullText += `${reasoningText}</think>`;
reasoningText = "";
}
if (token) {
fullText += token;
writeResponseChunk(response, {
uuid,
sources: [],
type: "textResponseChunk",
textResponse: token,
close: false,
error: false,
});
}
if (message.finish_reason !== null) {
writeResponseChunk(response, {
uuid,
sources,
type: "textResponseChunk",
textResponse: "",
close: true,
error: false,
});
response.removeListener("close", handleAbort);
clearInterval(timeoutCheck);
stream?.endMeasurement({
completion_tokens: LLMPerformanceMonitor.countTokens(fullText),
});
resolve(fullText);
}
}
} catch (e) {
writeResponseChunk(response, {
uuid,
sources,
type: "abort",
textResponse: null,
close: true,
error: e.message,
});
response.removeListener("close", handleAbort);
clearInterval(timeoutCheck);
stream?.endMeasurement({
completion_tokens: LLMPerformanceMonitor.countTokens(fullText),
});
resolve(fullText);
}
});
}
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
async embedTextInput(textInput) {
return await this.embedder.embedTextInput(textInput);
}
async embedChunks(textChunks = []) {
return await this.embedder.embedChunks(textChunks);
}
async compressMessages(promptArgs = {}, rawHistory = []) {
const { messageArrayCompressor } = require("../../helpers/chat");
const messageArray = this.constructPrompt(promptArgs);
return await messageArrayCompressor(this, messageArray, rawHistory);
}
}
async function fetchOpenRouterModels() {
return await fetch(`https://openrouter.ai/api/v1/models`, {
method: "GET",
headers: {
"Content-Type": "application/json",
},
})
.then((res) => res.json())
.then(({ data = [] }) => {
const models = {};
data.forEach((model) => {
models[model.id] = {
id: model.id,
name: model.name,
organization:
model.id.split("/")[0].charAt(0).toUpperCase() +
model.id.split("/")[0].slice(1),
maxLength: model.context_length,
};
});
// Cache all response information
if (!fs.existsSync(cacheFolder))
fs.mkdirSync(cacheFolder, { recursive: true });
fs.writeFileSync(
path.resolve(cacheFolder, "models.json"),
JSON.stringify(models),
{
encoding: "utf-8",
}
);
fs.writeFileSync(
path.resolve(cacheFolder, ".cached_at"),
String(Number(new Date())),
{
encoding: "utf-8",
}
);
return models;
})
.catch((e) => {
console.error(e);
return {};
});
}
module.exports = {
OpenRouterLLM,
fetchOpenRouterModels,
};