anything-llm/server/utils/AiProviders/perplexity/index.js

294 lines
8.9 KiB
JavaScript
Raw Normal View History

const { v4: uuidv4 } = require("uuid");
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
const {
writeResponseChunk,
clientAbortedHandler,
} = require("../../helpers/chat/responses");
const {
LLMPerformanceMonitor,
} = require("../../helpers/chat/LLMPerformanceMonitor");
function perplexityModels() {
const { MODELS } = require("./models.js");
return MODELS || {};
}
class PerplexityLLM {
constructor(embedder = null, modelPreference = null) {
if (!process.env.PERPLEXITY_API_KEY)
throw new Error("No Perplexity API key was set.");
const { OpenAI: OpenAIApi } = require("openai");
this.openai = new OpenAIApi({
baseURL: "https://api.perplexity.ai",
apiKey: process.env.PERPLEXITY_API_KEY ?? null,
});
this.model =
modelPreference ||
process.env.PERPLEXITY_MODEL_PREF ||
"llama-3-sonar-large-32k-online"; // Give at least a unique model to the provider as last fallback.
this.limits = {
history: this.promptWindowLimit() * 0.15,
system: this.promptWindowLimit() * 0.15,
user: this.promptWindowLimit() * 0.7,
};
this.embedder = embedder ?? new NativeEmbedder();
this.defaultTemp = 0.7;
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
allModelInformation() {
return perplexityModels();
}
streamingEnabled() {
return "streamGetChatCompletion" in this;
}
static promptWindowLimit(modelName) {
const availableModels = perplexityModels();
return availableModels[modelName]?.maxLength || 4096;
}
promptWindowLimit() {
const availableModels = this.allModelInformation();
return availableModels[this.model]?.maxLength || 4096;
}
async isValidChatCompletionModel(model = "") {
const availableModels = this.allModelInformation();
return availableModels.hasOwnProperty(model);
}
constructPrompt({
systemPrompt = "",
contextTexts = [],
chatHistory = [],
userPrompt = "",
}) {
const prompt = {
role: "system",
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`Perplexity chat: ${this.model} is not valid for chat completion!`
);
const result = await LLMPerformanceMonitor.measureAsyncFunction(
this.openai.chat.completions
.create({
model: this.model,
messages,
temperature,
})
.catch((e) => {
throw new Error(e.message);
})
);
if (
!result.output.hasOwnProperty("choices") ||
result.output.choices.length === 0
)
return null;
return {
textResponse: result.output.choices[0].message.content,
metrics: {
prompt_tokens: result.output.usage?.prompt_tokens || 0,
completion_tokens: result.output.usage?.completion_tokens || 0,
total_tokens: result.output.usage?.total_tokens || 0,
outputTps: result.output.usage?.completion_tokens / result.duration,
duration: result.duration,
},
};
}
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`Perplexity chat: ${this.model} is not valid for chat completion!`
);
const measuredStreamRequest = await LLMPerformanceMonitor.measureStream(
this.openai.chat.completions.create({
model: this.model,
stream: true,
messages,
temperature,
}),
messages
);
return measuredStreamRequest;
}
enrichToken(token, citations) {
if (Array.isArray(citations) && citations.length !== 0) {
return token.replace(/\[(\d+)\]/g, (match, index) => {
const citationIndex = parseInt(index) - 1;
return citations[citationIndex]
? `[[${index}](${citations[citationIndex]})]`
: match;
});
}
return token;
}
handleStream(response, stream, responseProps) {
const timeoutThresholdMs = 800;
const { uuid = uuidv4(), sources = [] } = responseProps;
let hasUsageMetrics = false;
let pplxCitations = []; // Array of links
let usage = {
completion_tokens: 0,
};
return new Promise(async (resolve) => {
let fullText = "";
let lastChunkTime = null;
const handleAbort = () => {
stream?.endMeasurement(usage);
clientAbortedHandler(resolve, fullText);
};
response.on("close", handleAbort);
const timeoutCheck = setInterval(() => {
if (lastChunkTime === null) return;
const now = Number(new Date());
const diffMs = now - lastChunkTime;
if (diffMs >= timeoutThresholdMs) {
console.log(
`Perplexity stream did not self-close and has been stale for >${timeoutThresholdMs}ms. Closing response stream.`
);
writeResponseChunk(response, {
uuid,
sources,
type: "textResponseChunk",
textResponse: "",
close: true,
error: false,
});
clearInterval(timeoutCheck);
response.removeListener("close", handleAbort);
stream?.endMeasurement(usage);
resolve(fullText);
}
}, 500);
// Now handle the chunks from the streamed response and append to fullText.
try {
for await (const chunk of stream) {
lastChunkTime = Number(new Date());
const message = chunk?.choices?.[0];
const token = message?.delta?.content;
if (Array.isArray(chunk.citations) && chunk.citations.length !== 0) {
pplxCitations = chunk.citations;
}
// If we see usage metrics in the chunk, we can use them directly
// instead of estimating them, but we only want to assign values if
// the response object is the exact same key:value pair we expect.
if (
chunk.hasOwnProperty("usage") && // exists
!!chunk.usage && // is not null
Object.values(chunk.usage).length > 0 // has values
) {
if (chunk.usage.hasOwnProperty("prompt_tokens")) {
usage.prompt_tokens = Number(chunk.usage.prompt_tokens);
}
if (chunk.usage.hasOwnProperty("completion_tokens")) {
hasUsageMetrics = true; // to stop estimating counter
usage.completion_tokens = Number(chunk.usage.completion_tokens);
}
}
if (token) {
let enrichedToken = this.enrichToken(token, pplxCitations);
fullText += enrichedToken;
if (!hasUsageMetrics) usage.completion_tokens++;
writeResponseChunk(response, {
uuid,
sources: [],
type: "textResponseChunk",
textResponse: enrichedToken,
close: false,
error: false,
});
}
if (message?.finish_reason) {
console.log("closing");
writeResponseChunk(response, {
uuid,
sources,
type: "textResponseChunk",
textResponse: "",
close: true,
error: false,
});
response.removeListener("close", handleAbort);
stream?.endMeasurement(usage);
clearInterval(timeoutCheck);
resolve(fullText);
break; // Break streaming when a valid finish_reason is first encountered
}
}
} catch (e) {
console.log(`\x1b[43m\x1b[34m[STREAMING ERROR]\x1b[0m ${e.message}`);
writeResponseChunk(response, {
uuid,
type: "abort",
textResponse: null,
sources: [],
close: true,
error: e.message,
});
stream?.endMeasurement(usage);
clearInterval(timeoutCheck);
resolve(fullText); // Return what we currently have - if anything.
}
});
}
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
async embedTextInput(textInput) {
return await this.embedder.embedTextInput(textInput);
}
async embedChunks(textChunks = []) {
return await this.embedder.embedChunks(textChunks);
}
async compressMessages(promptArgs = {}, rawHistory = []) {
const { messageArrayCompressor } = require("../../helpers/chat");
const messageArray = this.constructPrompt(promptArgs);
return await messageArrayCompressor(this, messageArray, rawHistory);
}
}
module.exports = {
PerplexityLLM,
perplexityModels,
};