anything-llm/server/utils/EmbeddingRerankers/native/index.js

242 lines
8.4 KiB
JavaScript
Raw Normal View History

const path = require("path");
const fs = require("fs");
class NativeEmbeddingReranker {
static #model = null;
static #tokenizer = null;
static #transformers = null;
2025-01-07 15:09:54 -08:00
// This is a folder that Mintplex Labs hosts for those who cannot capture the HF model download
// endpoint for various reasons. This endpoint is not guaranteed to be active or maintained
// and may go offline at any time at Mintplex Labs's discretion.
2025-02-05 10:30:43 -08:00
#fallbackHost = "https://cdn.anythingllm.com/support/models/";
2025-01-07 15:09:54 -08:00
constructor() {
// An alternative model to the mixedbread-ai/mxbai-rerank-xsmall-v1 model (speed on CPU is much slower for this model @ 18docs = 6s)
// Model Card: https://huggingface.co/Xenova/ms-marco-MiniLM-L-6-v2 (speed on CPU is much faster @ 18docs = 1.6s)
this.model = "Xenova/ms-marco-MiniLM-L-6-v2";
this.cacheDir = path.resolve(
process.env.STORAGE_DIR
? path.resolve(process.env.STORAGE_DIR, `models`)
: path.resolve(__dirname, `../../../storage/models`)
);
this.modelPath = path.resolve(this.cacheDir, ...this.model.split("/"));
// Make directory when it does not exist in existing installations
if (!fs.existsSync(this.cacheDir)) fs.mkdirSync(this.cacheDir);
2025-01-07 15:09:54 -08:00
this.modelDownloaded = fs.existsSync(
path.resolve(this.cacheDir, this.model)
);
this.log("Initialized");
}
log(text, ...args) {
console.log(`\x1b[36m[NativeEmbeddingReranker]\x1b[0m ${text}`, ...args);
}
2025-01-07 15:09:54 -08:00
/**
* This function will return the host of the current reranker suite.
* If the reranker suite is not initialized, it will return the default HF host.
* @returns {string} The host of the current reranker suite.
*/
get host() {
if (!NativeEmbeddingReranker.#transformers) return "https://huggingface.co";
try {
return new URL(NativeEmbeddingReranker.#transformers.env.remoteHost).host;
} catch (e) {
return this.#fallbackHost;
}
}
/**
* This function will preload the reranker suite and tokenizer.
* This is useful for reducing the latency of the first rerank call and pre-downloading the models and such
* to avoid having to wait for the models to download on the first rerank call.
*/
async preload() {
try {
this.log(`Preloading reranker suite...`);
await this.initClient();
this.log(
`Preloaded reranker suite. Reranking is available as a service now.`
);
return;
} catch (e) {
console.error(e);
this.log(
`Failed to preload reranker suite. Reranking will be available on the first rerank call.`
);
return;
}
}
async initClient() {
if (NativeEmbeddingReranker.#transformers) {
this.log(`Reranker suite already initialized - reusing.`);
return;
}
await import("@xenova/transformers").then(
2025-01-07 15:09:54 -08:00
async ({ AutoModelForSequenceClassification, AutoTokenizer, env }) => {
this.log(`Loading reranker suite...`);
NativeEmbeddingReranker.#transformers = {
AutoModelForSequenceClassification,
AutoTokenizer,
2025-01-07 15:09:54 -08:00
env,
};
2025-01-07 15:09:54 -08:00
// Attempt to load the model and tokenizer in this order:
// 1. From local file system cache
// 2. Download and cache from remote host (hf.co)
2025-02-05 10:30:43 -08:00
// 3. Download and cache from fallback host (cdn.anythingllm.com)
await this.#getPreTrainedModel();
await this.#getPreTrainedTokenizer();
}
);
return;
}
2025-01-07 15:09:54 -08:00
/**
* This function will load the model from the local file system cache, or download and cache it from the remote host.
* If the model is not found in the local file system cache, it will download and cache it from the remote host.
* If the model is not found in the remote host, it will download and cache it from the fallback host.
* @returns {Promise<any>} The loaded model.
*/
async #getPreTrainedModel() {
if (NativeEmbeddingReranker.#model) {
this.log(`Loading model from singleton...`);
return NativeEmbeddingReranker.#model;
}
2025-01-07 15:09:54 -08:00
try {
const model =
await NativeEmbeddingReranker.#transformers.AutoModelForSequenceClassification.from_pretrained(
this.model,
{
progress_callback: (p) => {
if (!this.modelDownloaded && p.status === "progress") {
this.log(
`[${this.host}] Loading model ${this.model}... ${p?.progress}%`
);
}
},
cache_dir: this.cacheDir,
}
);
this.log(`Loaded model ${this.model}`);
NativeEmbeddingReranker.#model = model;
return model;
} catch (e) {
this.log(
`Failed to load model ${this.model} from ${this.host}.`,
e.message,
e.stack
);
2025-01-07 15:09:54 -08:00
if (
NativeEmbeddingReranker.#transformers.env.remoteHost ===
this.#fallbackHost
) {
this.log(`Failed to load model ${this.model} from fallback host.`);
throw e;
}
this.log(`Falling back to fallback host. ${this.#fallbackHost}`);
NativeEmbeddingReranker.#transformers.env.remoteHost = this.#fallbackHost;
NativeEmbeddingReranker.#transformers.env.remotePathTemplate = "{model}/";
return await this.#getPreTrainedModel();
}
}
2025-01-07 15:09:54 -08:00
/**
* This function will load the tokenizer from the local file system cache, or download and cache it from the remote host.
* If the tokenizer is not found in the local file system cache, it will download and cache it from the remote host.
* If the tokenizer is not found in the remote host, it will download and cache it from the fallback host.
* @returns {Promise<any>} The loaded tokenizer.
*/
async #getPreTrainedTokenizer() {
if (NativeEmbeddingReranker.#tokenizer) {
this.log(`Loading tokenizer from singleton...`);
return NativeEmbeddingReranker.#tokenizer;
}
2025-01-07 15:09:54 -08:00
try {
const tokenizer =
await NativeEmbeddingReranker.#transformers.AutoTokenizer.from_pretrained(
this.model,
{
progress_callback: (p) => {
if (!this.modelDownloaded && p.status === "progress") {
this.log(
`[${this.host}] Loading tokenizer ${this.model}... ${p?.progress}%`
);
}
},
cache_dir: this.cacheDir,
}
);
this.log(`Loaded tokenizer ${this.model}`);
NativeEmbeddingReranker.#tokenizer = tokenizer;
return tokenizer;
} catch (e) {
this.log(
`Failed to load tokenizer ${this.model} from ${this.host}.`,
e.message,
e.stack
);
2025-01-07 15:09:54 -08:00
if (
NativeEmbeddingReranker.#transformers.env.remoteHost ===
this.#fallbackHost
) {
this.log(`Failed to load tokenizer ${this.model} from fallback host.`);
throw e;
}
this.log(`Falling back to fallback host. ${this.#fallbackHost}`);
NativeEmbeddingReranker.#transformers.env.remoteHost = this.#fallbackHost;
NativeEmbeddingReranker.#transformers.env.remotePathTemplate = "{model}/";
return await this.#getPreTrainedTokenizer();
}
}
/**
* Reranks a list of documents based on the query.
* @param {string} query - The query to rerank the documents against.
* @param {{text: string}[]} documents - The list of document text snippets to rerank. Should be output from a vector search.
* @param {Object} options - The options for the reranking.
* @param {number} options.topK - The number of top documents to return.
* @returns {Promise<any[]>} - The reranked list of documents.
*/
async rerank(query, documents, options = { topK: 4 }) {
await this.initClient();
const model = NativeEmbeddingReranker.#model;
const tokenizer = NativeEmbeddingReranker.#tokenizer;
const start = Date.now();
this.log(`Reranking ${documents.length} documents...`);
const inputs = tokenizer(new Array(documents.length).fill(query), {
text_pair: documents.map((doc) => doc.text),
padding: true,
truncation: true,
});
const { logits } = await model(inputs);
const reranked = logits
.sigmoid()
.tolist()
.map(([score], i) => ({
rerank_corpus_id: i,
rerank_score: score,
...documents[i],
}))
.sort((a, b) => b.rerank_score - a.rerank_score)
.slice(0, options.topK);
this.log(
`Reranking ${documents.length} documents to top ${options.topK} took ${Date.now() - start}ms`
);
return reranked;
}
}
module.exports = {
NativeEmbeddingReranker,
};