mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2025-03-28 08:34:42 +00:00
209 lines
5.7 KiB
JavaScript
209 lines
5.7 KiB
JavaScript
|
const { chatPrompt } = require("../../chats");
|
||
|
|
||
|
// Docs: https://github.com/jmorganca/ollama/blob/main/docs/api.md
|
||
|
class OllamaAILLM {
|
||
|
constructor(embedder = null) {
|
||
|
if (!process.env.OLLAMA_BASE_PATH)
|
||
|
throw new Error("No Ollama Base Path was set.");
|
||
|
|
||
|
this.basePath = process.env.OLLAMA_BASE_PATH;
|
||
|
this.model = process.env.OLLAMA_MODEL_PREF;
|
||
|
this.limits = {
|
||
|
history: this.promptWindowLimit() * 0.15,
|
||
|
system: this.promptWindowLimit() * 0.15,
|
||
|
user: this.promptWindowLimit() * 0.7,
|
||
|
};
|
||
|
|
||
|
if (!embedder)
|
||
|
throw new Error(
|
||
|
"INVALID OLLAMA SETUP. No embedding engine has been set. Go to instance settings and set up an embedding interface to use Ollama as your LLM."
|
||
|
);
|
||
|
this.embedder = embedder;
|
||
|
}
|
||
|
|
||
|
streamingEnabled() {
|
||
|
return "streamChat" in this && "streamGetChatCompletion" in this;
|
||
|
}
|
||
|
|
||
|
// Ensure the user set a value for the token limit
|
||
|
// and if undefined - assume 4096 window.
|
||
|
promptWindowLimit() {
|
||
|
const limit = process.env.OLLAMA_MODEL_TOKEN_LIMIT || 4096;
|
||
|
if (!limit || isNaN(Number(limit)))
|
||
|
throw new Error("No Ollama token context limit was set.");
|
||
|
return Number(limit);
|
||
|
}
|
||
|
|
||
|
async isValidChatCompletionModel(_ = "") {
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
constructPrompt({
|
||
|
systemPrompt = "",
|
||
|
contextTexts = [],
|
||
|
chatHistory = [],
|
||
|
userPrompt = "",
|
||
|
}) {
|
||
|
const prompt = {
|
||
|
role: "system",
|
||
|
content: `${systemPrompt}
|
||
|
Context:
|
||
|
${contextTexts
|
||
|
.map((text, i) => {
|
||
|
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
||
|
})
|
||
|
.join("")}`,
|
||
|
};
|
||
|
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
|
||
|
}
|
||
|
|
||
|
async isSafe(_input = "") {
|
||
|
// Not implemented so must be stubbed
|
||
|
return { safe: true, reasons: [] };
|
||
|
}
|
||
|
|
||
|
async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
|
||
|
const textResponse = await fetch(`${this.basePath}/api/chat`, {
|
||
|
method: "POST",
|
||
|
headers: {
|
||
|
"Content-Type": "application/json",
|
||
|
},
|
||
|
body: JSON.stringify({
|
||
|
model: this.model,
|
||
|
stream: false,
|
||
|
options: {
|
||
|
temperature: Number(workspace?.openAiTemp ?? 0.7),
|
||
|
},
|
||
|
messages: await this.compressMessages(
|
||
|
{
|
||
|
systemPrompt: chatPrompt(workspace),
|
||
|
userPrompt: prompt,
|
||
|
chatHistory,
|
||
|
},
|
||
|
rawHistory
|
||
|
),
|
||
|
}),
|
||
|
})
|
||
|
.then((res) => {
|
||
|
if (!res.ok)
|
||
|
throw new Error(`Ollama:sendChat ${res.status} ${res.statusText}`);
|
||
|
return res.json();
|
||
|
})
|
||
|
.then((data) => data?.message?.content)
|
||
|
.catch((e) => {
|
||
|
console.error(e);
|
||
|
throw new Error(`Ollama::sendChat failed with: ${error.message}`);
|
||
|
});
|
||
|
|
||
|
if (!textResponse.length)
|
||
|
throw new Error(`Ollama::sendChat text response was empty.`);
|
||
|
|
||
|
return textResponse;
|
||
|
}
|
||
|
|
||
|
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
|
||
|
const response = await fetch(`${this.basePath}/api/chat`, {
|
||
|
method: "POST",
|
||
|
headers: {
|
||
|
"Content-Type": "application/json",
|
||
|
},
|
||
|
body: JSON.stringify({
|
||
|
model: this.model,
|
||
|
stream: true,
|
||
|
options: {
|
||
|
temperature: Number(workspace?.openAiTemp ?? 0.7),
|
||
|
},
|
||
|
messages: await this.compressMessages(
|
||
|
{
|
||
|
systemPrompt: chatPrompt(workspace),
|
||
|
userPrompt: prompt,
|
||
|
chatHistory,
|
||
|
},
|
||
|
rawHistory
|
||
|
),
|
||
|
}),
|
||
|
}).catch((e) => {
|
||
|
console.error(e);
|
||
|
throw new Error(`Ollama:streamChat ${error.message}`);
|
||
|
});
|
||
|
|
||
|
return { type: "ollamaStream", response };
|
||
|
}
|
||
|
|
||
|
async getChatCompletion(messages = null, { temperature = 0.7 }) {
|
||
|
const textResponse = await fetch(`${this.basePath}/api/chat`, {
|
||
|
method: "POST",
|
||
|
headers: {
|
||
|
"Content-Type": "application/json",
|
||
|
},
|
||
|
body: JSON.stringify({
|
||
|
model: this.model,
|
||
|
messages,
|
||
|
stream: false,
|
||
|
options: {
|
||
|
temperature,
|
||
|
},
|
||
|
}),
|
||
|
})
|
||
|
.then((res) => {
|
||
|
if (!res.ok)
|
||
|
throw new Error(
|
||
|
`Ollama:getChatCompletion ${res.status} ${res.statusText}`
|
||
|
);
|
||
|
return res.json();
|
||
|
})
|
||
|
.then((data) => data?.message?.content)
|
||
|
.catch((e) => {
|
||
|
console.error(e);
|
||
|
throw new Error(
|
||
|
`Ollama::getChatCompletion failed with: ${error.message}`
|
||
|
);
|
||
|
});
|
||
|
|
||
|
if (!textResponse.length)
|
||
|
throw new Error(`Ollama::getChatCompletion text response was empty.`);
|
||
|
|
||
|
return textResponse;
|
||
|
}
|
||
|
|
||
|
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
|
||
|
const response = await fetch(`${this.basePath}/api/chat`, {
|
||
|
method: "POST",
|
||
|
headers: {
|
||
|
"Content-Type": "application/json",
|
||
|
},
|
||
|
body: JSON.stringify({
|
||
|
model: this.model,
|
||
|
stream: true,
|
||
|
messages,
|
||
|
options: {
|
||
|
temperature,
|
||
|
},
|
||
|
}),
|
||
|
}).catch((e) => {
|
||
|
console.error(e);
|
||
|
throw new Error(`Ollama:streamGetChatCompletion ${error.message}`);
|
||
|
});
|
||
|
|
||
|
return { type: "ollamaStream", response };
|
||
|
}
|
||
|
|
||
|
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
|
||
|
async embedTextInput(textInput) {
|
||
|
return await this.embedder.embedTextInput(textInput);
|
||
|
}
|
||
|
async embedChunks(textChunks = []) {
|
||
|
return await this.embedder.embedChunks(textChunks);
|
||
|
}
|
||
|
|
||
|
async compressMessages(promptArgs = {}, rawHistory = []) {
|
||
|
const { messageArrayCompressor } = require("../../helpers/chat");
|
||
|
const messageArray = this.constructPrompt(promptArgs);
|
||
|
return await messageArrayCompressor(this, messageArray, rawHistory);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
module.exports = {
|
||
|
OllamaAILLM,
|
||
|
};
|