mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2025-04-17 18:18:11 +00:00
feat: Add support for Zilliz Cloud by Milvus (#615)
* feat: Add support for Zilliz Cloud by Milvus * update placeholder text update data handling stmt * update zilliz descriptor
This commit is contained in:
parent
3fe7a25759
commit
0df86699e7
13 changed files with 466 additions and 2 deletions
.vscode
README.mddocker
frontend/src
components/VectorDBSelection/ZillizCloudOptions
media/vectordbs
pages
server
5
.vscode/settings.json
vendored
5
.vscode/settings.json
vendored
|
@ -2,10 +2,13 @@
|
|||
"cSpell.words": [
|
||||
"Dockerized",
|
||||
"Langchain",
|
||||
"Milvus",
|
||||
"Ollama",
|
||||
"openai",
|
||||
"Qdrant",
|
||||
"Weaviate"
|
||||
"vectordbs",
|
||||
"Weaviate",
|
||||
"Zilliz"
|
||||
],
|
||||
"eslint.experimental.useFlatConfig": true
|
||||
}
|
|
@ -89,6 +89,7 @@ Some cool features of AnythingLLM
|
|||
- [Weaviate](https://weaviate.io)
|
||||
- [QDrant](https://qdrant.tech)
|
||||
- [Milvus](https://milvus.io)
|
||||
- [Zilliz](https://zilliz.com)
|
||||
|
||||
### Technical Overview
|
||||
|
||||
|
|
|
@ -99,6 +99,11 @@ GID='1000'
|
|||
# MILVUS_USERNAME=
|
||||
# MILVUS_PASSWORD=
|
||||
|
||||
# Enable all below if you are using vector database: Zilliz Cloud.
|
||||
# VECTOR_DB="zilliz"
|
||||
# ZILLIZ_ENDPOINT="https://sample.api.gcp-us-west1.zillizcloud.com"
|
||||
# ZILLIZ_API_TOKEN=api-token-here
|
||||
|
||||
# CLOUD DEPLOYMENT VARIRABLES ONLY
|
||||
# AUTH_TOKEN="hunter2" # This is the password to your application if remote hosting.
|
||||
|
||||
|
|
|
@ -0,0 +1,38 @@
|
|||
export default function ZillizCloudOptions({ settings }) {
|
||||
return (
|
||||
<div className="w-full flex flex-col gap-y-4">
|
||||
<div className="w-full flex items-center gap-4">
|
||||
<div className="flex flex-col w-60">
|
||||
<label className="text-white text-sm font-semibold block mb-4">
|
||||
Cluster Endpoint
|
||||
</label>
|
||||
<input
|
||||
type="text"
|
||||
name="ZillizEndpoint"
|
||||
className="bg-zinc-900 text-white placeholder-white placeholder-opacity-60 text-sm rounded-lg focus:border-white block w-full p-2.5"
|
||||
placeholder="https://sample.api.gcp-us-west1.zillizcloud.com"
|
||||
defaultValue={settings?.ZillizEndpoint}
|
||||
required={true}
|
||||
autoComplete="off"
|
||||
spellCheck={false}
|
||||
/>
|
||||
</div>
|
||||
|
||||
<div className="flex flex-col w-60">
|
||||
<label className="text-white text-sm font-semibold block mb-4">
|
||||
API Token
|
||||
</label>
|
||||
<input
|
||||
type="password"
|
||||
name="ZillizApiToken"
|
||||
className="bg-zinc-900 text-white placeholder-white placeholder-opacity-60 text-sm rounded-lg focus:border-white block w-full p-2.5"
|
||||
placeholder="Zilliz cluster API Token"
|
||||
defaultValue={settings?.ZillizApiToken ? "*".repeat(20) : ""}
|
||||
autoComplete="off"
|
||||
spellCheck={false}
|
||||
/>
|
||||
</div>
|
||||
</div>
|
||||
</div>
|
||||
);
|
||||
}
|
BIN
frontend/src/media/vectordbs/zilliz.png
Normal file
BIN
frontend/src/media/vectordbs/zilliz.png
Normal file
Binary file not shown.
After ![]() (image error) Size: 14 KiB |
|
@ -9,6 +9,7 @@ import LanceDbLogo from "@/media/vectordbs/lancedb.png";
|
|||
import WeaviateLogo from "@/media/vectordbs/weaviate.png";
|
||||
import QDrantLogo from "@/media/vectordbs/qdrant.png";
|
||||
import MilvusLogo from "@/media/vectordbs/milvus.png";
|
||||
import ZillizLogo from "@/media/vectordbs/zilliz.png";
|
||||
import PreLoader from "@/components/Preloader";
|
||||
import ChangeWarningModal from "@/components/ChangeWarning";
|
||||
import { MagnifyingGlass } from "@phosphor-icons/react";
|
||||
|
@ -19,6 +20,7 @@ import QDrantDBOptions from "@/components/VectorDBSelection/QDrantDBOptions";
|
|||
import WeaviateDBOptions from "@/components/VectorDBSelection/WeaviateDBOptions";
|
||||
import VectorDBItem from "@/components/VectorDBSelection/VectorDBItem";
|
||||
import MilvusDBOptions from "@/components/VectorDBSelection/MilvusDBOptions";
|
||||
import ZillizCloudOptions from "@/components/VectorDBSelection/ZillizCloudOptions";
|
||||
|
||||
export default function GeneralVectorDatabase() {
|
||||
const [saving, setSaving] = useState(false);
|
||||
|
@ -33,7 +35,6 @@ export default function GeneralVectorDatabase() {
|
|||
useEffect(() => {
|
||||
async function fetchKeys() {
|
||||
const _settings = await System.keys();
|
||||
console.log(_settings);
|
||||
setSettings(_settings);
|
||||
setSelectedVDB(_settings?.VectorDB || "lancedb");
|
||||
setHasEmbeddings(_settings?.HasExistingEmbeddings || false);
|
||||
|
@ -66,6 +67,14 @@ export default function GeneralVectorDatabase() {
|
|||
options: <PineconeDBOptions settings={settings} />,
|
||||
description: "100% cloud-based vector database for enterprise use cases.",
|
||||
},
|
||||
{
|
||||
name: "Zilliz Cloud",
|
||||
value: "zilliz",
|
||||
logo: ZillizLogo,
|
||||
options: <ZillizCloudOptions settings={settings} />,
|
||||
description:
|
||||
"Cloud hosted vector database built for enterprise with SOC 2 compliance.",
|
||||
},
|
||||
{
|
||||
name: "QDrant",
|
||||
value: "qdrant",
|
||||
|
|
|
@ -10,6 +10,7 @@ import TogetherAILogo from "@/media/llmprovider/togetherai.png";
|
|||
import LMStudioLogo from "@/media/llmprovider/lmstudio.png";
|
||||
import LocalAiLogo from "@/media/llmprovider/localai.png";
|
||||
import MistralLogo from "@/media/llmprovider/mistral.jpeg";
|
||||
import ZillizLogo from "@/media/vectordbs/zilliz.png";
|
||||
import ChromaLogo from "@/media/vectordbs/chroma.png";
|
||||
import PineconeLogo from "@/media/vectordbs/pinecone.png";
|
||||
import LanceDbLogo from "@/media/vectordbs/lancedb.png";
|
||||
|
@ -139,6 +140,13 @@ const VECTOR_DB_PRIVACY = {
|
|||
],
|
||||
logo: MilvusLogo,
|
||||
},
|
||||
zilliz: {
|
||||
name: "Zilliz Cloud",
|
||||
description: [
|
||||
"Your vectors and document text are stored on your Zilliz cloud cluster.",
|
||||
],
|
||||
logo: ZillizLogo,
|
||||
},
|
||||
lancedb: {
|
||||
name: "LanceDB",
|
||||
description: [
|
||||
|
|
|
@ -6,6 +6,7 @@ import LanceDbLogo from "@/media/vectordbs/lancedb.png";
|
|||
import WeaviateLogo from "@/media/vectordbs/weaviate.png";
|
||||
import QDrantLogo from "@/media/vectordbs/qdrant.png";
|
||||
import MilvusLogo from "@/media/vectordbs/milvus.png";
|
||||
import ZillizLogo from "@/media/vectordbs/zilliz.png";
|
||||
import System from "@/models/system";
|
||||
import paths from "@/utils/paths";
|
||||
import PineconeDBOptions from "@/components/VectorDBSelection/PineconeDBOptions";
|
||||
|
@ -14,6 +15,7 @@ import QDrantDBOptions from "@/components/VectorDBSelection/QDrantDBOptions";
|
|||
import WeaviateDBOptions from "@/components/VectorDBSelection/WeaviateDBOptions";
|
||||
import LanceDBOptions from "@/components/VectorDBSelection/LanceDBOptions";
|
||||
import MilvusOptions from "@/components/VectorDBSelection/MilvusDBOptions";
|
||||
import ZillizCloudOptions from "@/components/VectorDBSelection/ZillizCloudOptions";
|
||||
import showToast from "@/utils/toast";
|
||||
import { useNavigate } from "react-router-dom";
|
||||
import VectorDBItem from "@/components/VectorDBSelection/VectorDBItem";
|
||||
|
@ -68,6 +70,14 @@ export default function VectorDatabaseConnection({
|
|||
options: <PineconeDBOptions settings={settings} />,
|
||||
description: "100% cloud-based vector database for enterprise use cases.",
|
||||
},
|
||||
{
|
||||
name: "Zilliz Cloud",
|
||||
value: "zilliz",
|
||||
logo: ZillizLogo,
|
||||
options: <ZillizCloudOptions settings={settings} />,
|
||||
description:
|
||||
"Cloud hosted vector database built for enterprise with SOC 2 compliance.",
|
||||
},
|
||||
{
|
||||
name: "QDrant",
|
||||
value: "qdrant",
|
||||
|
|
|
@ -96,6 +96,11 @@ VECTOR_DB="lancedb"
|
|||
# MILVUS_USERNAME=
|
||||
# MILVUS_PASSWORD=
|
||||
|
||||
# Enable all below if you are using vector database: Zilliz Cloud.
|
||||
# VECTOR_DB="zilliz"
|
||||
# ZILLIZ_ENDPOINT="https://sample.api.gcp-us-west1.zillizcloud.com"
|
||||
# ZILLIZ_API_TOKEN=api-token-here
|
||||
|
||||
# CLOUD DEPLOYMENT VARIRABLES ONLY
|
||||
# AUTH_TOKEN="hunter2" # This is the password to your application if remote hosting.
|
||||
# STORAGE_DIR= # absolute filesystem path with no trailing slash
|
||||
|
|
|
@ -63,6 +63,12 @@ const SystemSettings = {
|
|||
MilvusPassword: !!process.env.MILVUS_PASSWORD,
|
||||
}
|
||||
: {}),
|
||||
...(vectorDB === "zilliz"
|
||||
? {
|
||||
ZillizEndpoint: process.env.ZILLIZ_ENDPOINT,
|
||||
ZillizApiToken: process.env.ZILLIZ_API_TOKEN,
|
||||
}
|
||||
: {}),
|
||||
LLMProvider: llmProvider,
|
||||
...(llmProvider === "openai"
|
||||
? {
|
||||
|
|
|
@ -19,6 +19,9 @@ function getVectorDbClass() {
|
|||
case "milvus":
|
||||
const { Milvus } = require("../vectorDbProviders/milvus");
|
||||
return Milvus;
|
||||
case "zilliz":
|
||||
const { Zilliz } = require("../vectorDbProviders/zilliz");
|
||||
return Zilliz;
|
||||
default:
|
||||
throw new Error("ENV: No VECTOR_DB value found in environment!");
|
||||
}
|
||||
|
|
|
@ -199,6 +199,16 @@ const KEY_MAPPING = {
|
|||
checks: [isNotEmpty],
|
||||
},
|
||||
|
||||
// Zilliz Cloud Options
|
||||
ZillizEndpoint: {
|
||||
envKey: "ZILLIZ_ENDPOINT",
|
||||
checks: [isValidURL],
|
||||
},
|
||||
ZillizApiToken: {
|
||||
envKey: "ZILLIZ_API_TOKEN",
|
||||
checks: [isNotEmpty],
|
||||
},
|
||||
|
||||
// Together Ai Options
|
||||
TogetherAiApiKey: {
|
||||
envKey: "TOGETHER_AI_API_KEY",
|
||||
|
@ -316,6 +326,7 @@ function supportedVectorDB(input = "") {
|
|||
"weaviate",
|
||||
"qdrant",
|
||||
"milvus",
|
||||
"zilliz",
|
||||
];
|
||||
return supported.includes(input)
|
||||
? null
|
||||
|
|
365
server/utils/vectorDbProviders/zilliz/index.js
Normal file
365
server/utils/vectorDbProviders/zilliz/index.js
Normal file
|
@ -0,0 +1,365 @@
|
|||
const {
|
||||
DataType,
|
||||
MetricType,
|
||||
IndexType,
|
||||
MilvusClient,
|
||||
} = require("@zilliz/milvus2-sdk-node");
|
||||
const { RecursiveCharacterTextSplitter } = require("langchain/text_splitter");
|
||||
const { v4: uuidv4 } = require("uuid");
|
||||
const { storeVectorResult, cachedVectorInformation } = require("../../files");
|
||||
const {
|
||||
toChunks,
|
||||
getLLMProvider,
|
||||
getEmbeddingEngineSelection,
|
||||
} = require("../../helpers");
|
||||
|
||||
// Zilliz is basically a copy of Milvus DB class with a different constructor
|
||||
// to connect to the cloud
|
||||
const Zilliz = {
|
||||
name: "Zilliz",
|
||||
connect: async function () {
|
||||
if (process.env.VECTOR_DB !== "zilliz")
|
||||
throw new Error("Zilliz::Invalid ENV settings");
|
||||
|
||||
const client = new MilvusClient({
|
||||
address: process.env.ZILLIZ_ENDPOINT,
|
||||
token: process.env.ZILLIZ_API_TOKEN,
|
||||
});
|
||||
|
||||
const { isHealthy } = await client.checkHealth();
|
||||
if (!isHealthy)
|
||||
throw new Error(
|
||||
"Zilliz::Invalid Heartbeat received - is the instance online?"
|
||||
);
|
||||
|
||||
return { client };
|
||||
},
|
||||
heartbeat: async function () {
|
||||
await this.connect();
|
||||
return { heartbeat: Number(new Date()) };
|
||||
},
|
||||
totalVectors: async function () {
|
||||
const { client } = await this.connect();
|
||||
const { collection_names } = await client.listCollections();
|
||||
const total = collection_names.reduce(async (acc, collection_name) => {
|
||||
const statistics = await client.getCollectionStatistics({
|
||||
collection_name,
|
||||
});
|
||||
return Number(acc) + Number(statistics?.data?.row_count ?? 0);
|
||||
}, 0);
|
||||
return total;
|
||||
},
|
||||
namespaceCount: async function (_namespace = null) {
|
||||
const { client } = await this.connect();
|
||||
const statistics = await client.getCollectionStatistics({
|
||||
collection_name: _namespace,
|
||||
});
|
||||
return Number(statistics?.data?.row_count ?? 0);
|
||||
},
|
||||
namespace: async function (client, namespace = null) {
|
||||
if (!namespace) throw new Error("No namespace value provided.");
|
||||
const collection = await client
|
||||
.getCollectionStatistics({ collection_name: namespace })
|
||||
.catch(() => null);
|
||||
return collection;
|
||||
},
|
||||
hasNamespace: async function (namespace = null) {
|
||||
if (!namespace) return false;
|
||||
const { client } = await this.connect();
|
||||
return await this.namespaceExists(client, namespace);
|
||||
},
|
||||
namespaceExists: async function (client, namespace = null) {
|
||||
if (!namespace) throw new Error("No namespace value provided.");
|
||||
const { value } = await client
|
||||
.hasCollection({ collection_name: namespace })
|
||||
.catch((e) => {
|
||||
console.error("Zilliz::namespaceExists", e.message);
|
||||
return { value: false };
|
||||
});
|
||||
return value;
|
||||
},
|
||||
deleteVectorsInNamespace: async function (client, namespace = null) {
|
||||
await client.dropCollection({ collection_name: namespace });
|
||||
return true;
|
||||
},
|
||||
// Zilliz requires a dimension aspect for collection creation
|
||||
// we pass this in from the first chunk to infer the dimensions like other
|
||||
// providers do.
|
||||
getOrCreateCollection: async function (client, namespace, dimensions = null) {
|
||||
const isExists = await this.namespaceExists(client, namespace);
|
||||
if (!isExists) {
|
||||
if (!dimensions)
|
||||
throw new Error(
|
||||
`Zilliz:getOrCreateCollection Unable to infer vector dimension from input. Open an issue on Github for support.`
|
||||
);
|
||||
|
||||
await client.createCollection({
|
||||
collection_name: namespace,
|
||||
fields: [
|
||||
{
|
||||
name: "id",
|
||||
description: "id",
|
||||
data_type: DataType.VarChar,
|
||||
max_length: 255,
|
||||
is_primary_key: true,
|
||||
},
|
||||
{
|
||||
name: "vector",
|
||||
description: "vector",
|
||||
data_type: DataType.FloatVector,
|
||||
dim: dimensions,
|
||||
},
|
||||
{
|
||||
name: "metadata",
|
||||
decription: "metadata",
|
||||
data_type: DataType.JSON,
|
||||
},
|
||||
],
|
||||
});
|
||||
await client.createIndex({
|
||||
collection_name: namespace,
|
||||
field_name: "vector",
|
||||
index_type: IndexType.AUTOINDEX,
|
||||
metric_type: MetricType.COSINE,
|
||||
});
|
||||
await client.loadCollectionSync({
|
||||
collection_name: namespace,
|
||||
});
|
||||
}
|
||||
},
|
||||
addDocumentToNamespace: async function (
|
||||
namespace,
|
||||
documentData = {},
|
||||
fullFilePath = null
|
||||
) {
|
||||
const { DocumentVectors } = require("../../../models/vectors");
|
||||
try {
|
||||
let vectorDimension = null;
|
||||
const { pageContent, docId, ...metadata } = documentData;
|
||||
if (!pageContent || pageContent.length == 0) return false;
|
||||
|
||||
console.log("Adding new vectorized document into namespace", namespace);
|
||||
const cacheResult = await cachedVectorInformation(fullFilePath);
|
||||
if (cacheResult.exists) {
|
||||
const { client } = await this.connect();
|
||||
const { chunks } = cacheResult;
|
||||
const documentVectors = [];
|
||||
vectorDimension = chunks[0][0].values.length || null;
|
||||
|
||||
await this.getOrCreateCollection(client, namespace, vectorDimension);
|
||||
for (const chunk of chunks) {
|
||||
// Before sending to Pinecone and saving the records to our db
|
||||
// we need to assign the id of each chunk that is stored in the cached file.
|
||||
const newChunks = chunk.map((chunk) => {
|
||||
const id = uuidv4();
|
||||
documentVectors.push({ docId, vectorId: id });
|
||||
return { id, vector: chunk.values, metadata: chunk.metadata };
|
||||
});
|
||||
const insertResult = await client.insert({
|
||||
collection_name: namespace,
|
||||
data: newChunks,
|
||||
});
|
||||
|
||||
if (insertResult?.status.error_code !== "Success") {
|
||||
throw new Error(
|
||||
`Error embedding into Zilliz! Reason:${insertResult?.status.reason}`
|
||||
);
|
||||
}
|
||||
}
|
||||
await DocumentVectors.bulkInsert(documentVectors);
|
||||
await client.flushSync({ collection_names: [namespace] });
|
||||
return true;
|
||||
}
|
||||
|
||||
const textSplitter = new RecursiveCharacterTextSplitter({
|
||||
chunkSize:
|
||||
getEmbeddingEngineSelection()?.embeddingMaxChunkLength || 1_000,
|
||||
chunkOverlap: 20,
|
||||
});
|
||||
const textChunks = await textSplitter.splitText(pageContent);
|
||||
|
||||
console.log("Chunks created from document:", textChunks.length);
|
||||
const LLMConnector = getLLMProvider();
|
||||
const documentVectors = [];
|
||||
const vectors = [];
|
||||
const vectorValues = await LLMConnector.embedChunks(textChunks);
|
||||
|
||||
if (!!vectorValues && vectorValues.length > 0) {
|
||||
for (const [i, vector] of vectorValues.entries()) {
|
||||
if (!vectorDimension) vectorDimension = vector.length;
|
||||
const vectorRecord = {
|
||||
id: uuidv4(),
|
||||
values: vector,
|
||||
// [DO NOT REMOVE]
|
||||
// LangChain will be unable to find your text if you embed manually and dont include the `text` key.
|
||||
metadata: { ...metadata, text: textChunks[i] },
|
||||
};
|
||||
|
||||
vectors.push(vectorRecord);
|
||||
documentVectors.push({ docId, vectorId: vectorRecord.id });
|
||||
}
|
||||
} else {
|
||||
throw new Error(
|
||||
"Could not embed document chunks! This document will not be recorded."
|
||||
);
|
||||
}
|
||||
|
||||
if (vectors.length > 0) {
|
||||
const chunks = [];
|
||||
const { client } = await this.connect();
|
||||
await this.getOrCreateCollection(client, namespace, vectorDimension);
|
||||
|
||||
console.log("Inserting vectorized chunks into Zilliz.");
|
||||
for (const chunk of toChunks(vectors, 100)) {
|
||||
chunks.push(chunk);
|
||||
const insertResult = await client.insert({
|
||||
collection_name: namespace,
|
||||
data: chunk.map((item) => ({
|
||||
id: item.id,
|
||||
vector: item.values,
|
||||
metadata: chunk.metadata,
|
||||
})),
|
||||
});
|
||||
|
||||
if (insertResult?.status.error_code !== "Success") {
|
||||
throw new Error(
|
||||
`Error embedding into Zilliz! Reason:${insertResult?.status.reason}`
|
||||
);
|
||||
}
|
||||
}
|
||||
await storeVectorResult(chunks, fullFilePath);
|
||||
await client.flushSync({ collection_names: [namespace] });
|
||||
}
|
||||
|
||||
await DocumentVectors.bulkInsert(documentVectors);
|
||||
return true;
|
||||
} catch (e) {
|
||||
console.error(e);
|
||||
console.error("addDocumentToNamespace", e.message);
|
||||
return false;
|
||||
}
|
||||
},
|
||||
deleteDocumentFromNamespace: async function (namespace, docId) {
|
||||
const { DocumentVectors } = require("../../../models/vectors");
|
||||
const { client } = await this.connect();
|
||||
if (!(await this.namespaceExists(client, namespace))) return;
|
||||
const knownDocuments = await DocumentVectors.where({ docId });
|
||||
if (knownDocuments.length === 0) return;
|
||||
|
||||
const vectorIds = knownDocuments.map((doc) => doc.vectorId);
|
||||
const queryIn = vectorIds.map((v) => `'${v}'`).join(",");
|
||||
await client.deleteEntities({
|
||||
collection_name: namespace,
|
||||
expr: `id in [${queryIn}]`,
|
||||
});
|
||||
|
||||
const indexes = knownDocuments.map((doc) => doc.id);
|
||||
await DocumentVectors.deleteIds(indexes);
|
||||
|
||||
// Even after flushing Zilliz can take some time to re-calc the count
|
||||
// so all we can hope to do is flushSync so that the count can be correct
|
||||
// on a later call.
|
||||
await client.flushSync({ collection_names: [namespace] });
|
||||
return true;
|
||||
},
|
||||
performSimilaritySearch: async function ({
|
||||
namespace = null,
|
||||
input = "",
|
||||
LLMConnector = null,
|
||||
similarityThreshold = 0.25,
|
||||
}) {
|
||||
if (!namespace || !input || !LLMConnector)
|
||||
throw new Error("Invalid request to performSimilaritySearch.");
|
||||
|
||||
const { client } = await this.connect();
|
||||
if (!(await this.namespaceExists(client, namespace))) {
|
||||
return {
|
||||
contextTexts: [],
|
||||
sources: [],
|
||||
message: "Invalid query - no documents found for workspace!",
|
||||
};
|
||||
}
|
||||
|
||||
const queryVector = await LLMConnector.embedTextInput(input);
|
||||
const { contextTexts, sourceDocuments } = await this.similarityResponse(
|
||||
client,
|
||||
namespace,
|
||||
queryVector,
|
||||
similarityThreshold
|
||||
);
|
||||
|
||||
const sources = sourceDocuments.map((metadata, i) => {
|
||||
return { ...metadata, text: contextTexts[i] };
|
||||
});
|
||||
return {
|
||||
contextTexts,
|
||||
sources: this.curateSources(sources),
|
||||
message: false,
|
||||
};
|
||||
},
|
||||
similarityResponse: async function (
|
||||
client,
|
||||
namespace,
|
||||
queryVector,
|
||||
similarityThreshold = 0.25
|
||||
) {
|
||||
const result = {
|
||||
contextTexts: [],
|
||||
sourceDocuments: [],
|
||||
scores: [],
|
||||
};
|
||||
const response = await client.search({
|
||||
collection_name: namespace,
|
||||
vectors: queryVector,
|
||||
});
|
||||
response.results.forEach((match) => {
|
||||
if (match.score < similarityThreshold) return;
|
||||
result.contextTexts.push(match.metadata.text);
|
||||
result.sourceDocuments.push(match);
|
||||
result.scores.push(match.score);
|
||||
});
|
||||
return result;
|
||||
},
|
||||
"namespace-stats": async function (reqBody = {}) {
|
||||
const { namespace = null } = reqBody;
|
||||
if (!namespace) throw new Error("namespace required");
|
||||
const { client } = await this.connect();
|
||||
if (!(await this.namespaceExists(client, namespace)))
|
||||
throw new Error("Namespace by that name does not exist.");
|
||||
const stats = await this.namespace(client, namespace);
|
||||
return stats
|
||||
? stats
|
||||
: { message: "No stats were able to be fetched from DB for namespace" };
|
||||
},
|
||||
"delete-namespace": async function (reqBody = {}) {
|
||||
const { namespace = null } = reqBody;
|
||||
const { client } = await this.connect();
|
||||
if (!(await this.namespaceExists(client, namespace)))
|
||||
throw new Error("Namespace by that name does not exist.");
|
||||
|
||||
const statistics = await this.namespace(client, namespace);
|
||||
await this.deleteVectorsInNamespace(client, namespace);
|
||||
const vectorCount = Number(statistics?.data?.row_count ?? 0);
|
||||
return {
|
||||
message: `Namespace ${namespace} was deleted along with ${vectorCount} vectors.`,
|
||||
};
|
||||
},
|
||||
curateSources: function (sources = []) {
|
||||
const documents = [];
|
||||
for (const source of sources) {
|
||||
const { metadata = {} } = source;
|
||||
if (Object.keys(metadata).length > 0) {
|
||||
documents.push({
|
||||
...metadata,
|
||||
...(source.hasOwnProperty("pageContent")
|
||||
? { text: source.pageContent }
|
||||
: {}),
|
||||
});
|
||||
}
|
||||
}
|
||||
|
||||
return documents;
|
||||
},
|
||||
};
|
||||
|
||||
module.exports.Zilliz = Zilliz;
|
Loading…
Add table
Reference in a new issue