mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2025-04-17 18:18:11 +00:00
Ollama agents (#1270)
* add LMStudio agent support (generic) support "work" with non-tool callable LLMs, highly dependent on system specs * add comments * enable few-shot prompting per function for OSS models * Add Agent support for Ollama models * improve json parsing for ollama text responses
This commit is contained in:
parent
1b4559f57f
commit
331d3741c9
10 changed files with 185 additions and 42 deletions
|
@ -5,8 +5,8 @@ import { AVAILABLE_LLM_PROVIDERS } from "@/pages/GeneralSettings/LLMPreference";
|
|||
import { CaretUpDown, Gauge, MagnifyingGlass, X } from "@phosphor-icons/react";
|
||||
import AgentModelSelection from "../AgentModelSelection";
|
||||
|
||||
const ENABLED_PROVIDERS = ["openai", "anthropic", "lmstudio"];
|
||||
const WARN_PERFORMANCE = ["lmstudio"];
|
||||
const ENABLED_PROVIDERS = ["openai", "anthropic", "lmstudio", "ollama"];
|
||||
const WARN_PERFORMANCE = ["lmstudio", "ollama"];
|
||||
|
||||
const LLM_DEFAULT = {
|
||||
name: "Please make a selection",
|
||||
|
|
|
@ -46,6 +46,7 @@
|
|||
"dotenv": "^16.0.3",
|
||||
"express": "^4.18.2",
|
||||
"express-ws": "^5.0.2",
|
||||
"extract-json-from-string": "^1.0.1",
|
||||
"extract-zip": "^2.0.1",
|
||||
"graphql": "^16.7.1",
|
||||
"joi": "^17.11.0",
|
||||
|
@ -59,6 +60,7 @@
|
|||
"multer": "^1.4.5-lts.1",
|
||||
"node-html-markdown": "^1.3.0",
|
||||
"node-llama-cpp": "^2.8.0",
|
||||
"ollama": "^0.5.0",
|
||||
"openai": "4.38.5",
|
||||
"pinecone-client": "^1.1.0",
|
||||
"pluralize": "^8.0.0",
|
||||
|
|
|
@ -741,6 +741,8 @@ ${this.getHistory({ to: route.to })
|
|||
return new Providers.AnthropicProvider({ model: config.model });
|
||||
case "lmstudio":
|
||||
return new Providers.LMStudioProvider({});
|
||||
case "ollama":
|
||||
return new Providers.OllamaProvider({ model: config.model });
|
||||
|
||||
default:
|
||||
throw new Error(
|
||||
|
|
|
@ -102,48 +102,34 @@ ${JSON.stringify(def.parameters.properties, null, 4)}\n`;
|
|||
return { valid: true, reason: null };
|
||||
}
|
||||
|
||||
async functionCall(messages, functions) {
|
||||
async functionCall(messages, functions, chatCb = null) {
|
||||
const history = [...messages].filter((msg) =>
|
||||
["user", "assistant"].includes(msg.role)
|
||||
);
|
||||
if (history[history.length - 1].role !== "user") return null;
|
||||
const response = await chatCb({
|
||||
messages: [
|
||||
{
|
||||
content: `You are a program which picks the most optimal function and parameters to call.
|
||||
DO NOT HAVE TO PICK A FUNCTION IF IT WILL NOT HELP ANSWER OR FULFILL THE USER'S QUERY.
|
||||
When a function is selection, respond in JSON with no additional text.
|
||||
When there is no relevant function to call - return with a regular chat text response.
|
||||
Your task is to pick a **single** function that we will use to call, if any seem useful or relevant for the user query.
|
||||
|
||||
const response = await this.client.chat.completions
|
||||
.create({
|
||||
model: this.model,
|
||||
temperature: 0,
|
||||
messages: [
|
||||
{
|
||||
content: `You are a program which picks the most optimal function and parameters to call.
|
||||
DO NOT HAVE TO PICK A FUNCTION IF IT WILL NOT HELP ANSWER OR FULFILL THE USER'S QUERY.
|
||||
When a function is selection, respond in JSON with no additional text.
|
||||
When there is no relevant function to call - return with a regular chat text response.
|
||||
Your task is to pick a **single** function that we will use to call, if any seem useful or relevant for the user query.
|
||||
All JSON responses should have two keys.
|
||||
'name': this is the name of the function name to call. eg: 'web-scraper', 'rag-memory', etc..
|
||||
'arguments': this is an object with the function properties to invoke the function.
|
||||
DO NOT INCLUDE ANY OTHER KEYS IN JSON RESPONSES.
|
||||
|
||||
All JSON responses should have two keys.
|
||||
'name': this is the name of the function name to call. eg: 'web-scraper', 'rag-memory', etc..
|
||||
'arguments': this is an object with the function properties to invoke the function.
|
||||
DO NOT INCLUDE ANY OTHER KEYS IN JSON RESPONSES.
|
||||
Here are the available tools you can use an examples of a query and response so you can understand how each one works.
|
||||
${this.showcaseFunctions(functions)}
|
||||
|
||||
Here are the available tools you can use an examples of a query and response so you can understand how each one works.
|
||||
${this.showcaseFunctions(functions)}
|
||||
|
||||
Now pick a function if there is an appropriate one to use given the last user message and the given conversation so far.`,
|
||||
role: "system",
|
||||
},
|
||||
...history,
|
||||
],
|
||||
})
|
||||
.then((result) => {
|
||||
if (!result.hasOwnProperty("choices"))
|
||||
throw new Error("LMStudio chat: No results!");
|
||||
if (result.choices.length === 0)
|
||||
throw new Error("LMStudio chat: No results length!");
|
||||
return result.choices[0].message.content;
|
||||
})
|
||||
.catch((_) => {
|
||||
return null;
|
||||
});
|
||||
Now pick a function if there is an appropriate one to use given the last user message and the given conversation so far.`,
|
||||
role: "system",
|
||||
},
|
||||
...history,
|
||||
],
|
||||
});
|
||||
|
||||
const call = safeJsonParse(response, null);
|
||||
if (call === null) return { toolCall: null, text: response }; // failed to parse, so must be text.
|
||||
|
|
|
@ -1,9 +1,11 @@
|
|||
const OpenAIProvider = require("./openai.js");
|
||||
const AnthropicProvider = require("./anthropic.js");
|
||||
const LMStudioProvider = require("./lmstudio.js");
|
||||
const OllamaProvider = require("./ollama.js");
|
||||
|
||||
module.exports = {
|
||||
OpenAIProvider,
|
||||
AnthropicProvider,
|
||||
LMStudioProvider,
|
||||
OllamaProvider,
|
||||
};
|
||||
|
|
|
@ -27,6 +27,25 @@ class LMStudioProvider extends InheritMultiple([Provider, UnTooled]) {
|
|||
return this._client;
|
||||
}
|
||||
|
||||
async #handleFunctionCallChat({ messages = [] }) {
|
||||
return await this.client.chat.completions
|
||||
.create({
|
||||
model: this.model,
|
||||
temperature: 0,
|
||||
messages,
|
||||
})
|
||||
.then((result) => {
|
||||
if (!result.hasOwnProperty("choices"))
|
||||
throw new Error("LMStudio chat: No results!");
|
||||
if (result.choices.length === 0)
|
||||
throw new Error("LMStudio chat: No results length!");
|
||||
return result.choices[0].message.content;
|
||||
})
|
||||
.catch((_) => {
|
||||
return null;
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a completion based on the received messages.
|
||||
*
|
||||
|
@ -38,7 +57,11 @@ class LMStudioProvider extends InheritMultiple([Provider, UnTooled]) {
|
|||
try {
|
||||
let completion;
|
||||
if (functions.length > 0) {
|
||||
const { toolCall, text } = await this.functionCall(messages, functions);
|
||||
const { toolCall, text } = await this.functionCall(
|
||||
messages,
|
||||
functions,
|
||||
this.#handleFunctionCallChat.bind(this)
|
||||
);
|
||||
|
||||
if (toolCall !== null) {
|
||||
this.providerLog(`Valid tool call found - running ${toolCall.name}.`);
|
||||
|
|
107
server/utils/agents/aibitat/providers/ollama.js
Normal file
107
server/utils/agents/aibitat/providers/ollama.js
Normal file
|
@ -0,0 +1,107 @@
|
|||
const Provider = require("./ai-provider.js");
|
||||
const InheritMultiple = require("./helpers/classes.js");
|
||||
const UnTooled = require("./helpers/untooled.js");
|
||||
const { Ollama } = require("ollama");
|
||||
|
||||
/**
|
||||
* The provider for the Ollama provider.
|
||||
*/
|
||||
class OllamaProvider extends InheritMultiple([Provider, UnTooled]) {
|
||||
model;
|
||||
|
||||
constructor(config = {}) {
|
||||
const {
|
||||
// options = {},
|
||||
model = null,
|
||||
} = config;
|
||||
|
||||
super();
|
||||
this._client = new Ollama({ host: process.env.OLLAMA_BASE_PATH });
|
||||
this.model = model;
|
||||
this.verbose = true;
|
||||
}
|
||||
|
||||
get client() {
|
||||
return this._client;
|
||||
}
|
||||
|
||||
async #handleFunctionCallChat({ messages = [] }) {
|
||||
const response = await this.client.chat({
|
||||
model: this.model,
|
||||
messages,
|
||||
options: {
|
||||
temperature: 0,
|
||||
},
|
||||
});
|
||||
return response?.message?.content || null;
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a completion based on the received messages.
|
||||
*
|
||||
* @param messages A list of messages to send to the API.
|
||||
* @param functions
|
||||
* @returns The completion.
|
||||
*/
|
||||
async complete(messages, functions = null) {
|
||||
try {
|
||||
let completion;
|
||||
if (functions.length > 0) {
|
||||
const { toolCall, text } = await this.functionCall(
|
||||
messages,
|
||||
functions,
|
||||
this.#handleFunctionCallChat.bind(this)
|
||||
);
|
||||
|
||||
if (toolCall !== null) {
|
||||
this.providerLog(`Valid tool call found - running ${toolCall.name}.`);
|
||||
this.deduplicator.trackRun(toolCall.name, toolCall.arguments);
|
||||
return {
|
||||
result: null,
|
||||
functionCall: {
|
||||
name: toolCall.name,
|
||||
arguments: toolCall.arguments,
|
||||
},
|
||||
cost: 0,
|
||||
};
|
||||
}
|
||||
completion = { content: text };
|
||||
}
|
||||
|
||||
if (!completion?.content) {
|
||||
this.providerLog(
|
||||
"Will assume chat completion without tool call inputs."
|
||||
);
|
||||
const response = await this.client.chat({
|
||||
model: this.model,
|
||||
messages: this.cleanMsgs(messages),
|
||||
options: {
|
||||
use_mlock: true,
|
||||
temperature: 0.5,
|
||||
},
|
||||
});
|
||||
completion = response.message;
|
||||
}
|
||||
|
||||
return {
|
||||
result: completion.content,
|
||||
cost: 0,
|
||||
};
|
||||
} catch (error) {
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Get the cost of the completion.
|
||||
*
|
||||
* @param _usage The completion to get the cost for.
|
||||
* @returns The cost of the completion.
|
||||
* Stubbed since LMStudio has no cost basis.
|
||||
*/
|
||||
getCost(_usage) {
|
||||
return 0;
|
||||
}
|
||||
}
|
||||
|
||||
module.exports = OllamaProvider;
|
|
@ -79,7 +79,11 @@ class AgentHandler {
|
|||
break;
|
||||
case "lmstudio":
|
||||
if (!process.env.LMSTUDIO_BASE_PATH)
|
||||
throw new Error("LMStudio bash path must be provided to use agents.");
|
||||
throw new Error("LMStudio base path must be provided to use agents.");
|
||||
break;
|
||||
case "ollama":
|
||||
if (!process.env.OLLAMA_BASE_PATH)
|
||||
throw new Error("Ollama base path must be provided to use agents.");
|
||||
break;
|
||||
default:
|
||||
throw new Error("No provider found to power agent cluster.");
|
||||
|
@ -94,6 +98,8 @@ class AgentHandler {
|
|||
return "claude-3-sonnet-20240229";
|
||||
case "lmstudio":
|
||||
return "server-default";
|
||||
case "ollama":
|
||||
return "llama3:latest";
|
||||
default:
|
||||
return "unknown";
|
||||
}
|
||||
|
|
|
@ -4,6 +4,7 @@ process.env.NODE_ENV === "development"
|
|||
const JWT = require("jsonwebtoken");
|
||||
const { User } = require("../../models/user");
|
||||
const { jsonrepair } = require("jsonrepair");
|
||||
const extract = require("extract-json-from-string");
|
||||
|
||||
function reqBody(request) {
|
||||
return typeof request.body === "string"
|
||||
|
@ -67,8 +68,6 @@ function safeJsonParse(jsonString, fallback = null) {
|
|||
return JSON.parse(jsonString);
|
||||
} catch {}
|
||||
|
||||
// If the jsonString does not look like an Obj or Array, dont attempt
|
||||
// to repair it.
|
||||
if (jsonString?.startsWith("[") || jsonString?.startsWith("{")) {
|
||||
try {
|
||||
const repairedJson = jsonrepair(jsonString);
|
||||
|
@ -76,6 +75,10 @@ function safeJsonParse(jsonString, fallback = null) {
|
|||
} catch {}
|
||||
}
|
||||
|
||||
try {
|
||||
return extract(jsonString)[0];
|
||||
} catch {}
|
||||
|
||||
return fallback;
|
||||
}
|
||||
|
||||
|
|
|
@ -2678,6 +2678,11 @@ extract-files@^9.0.0:
|
|||
resolved "https://registry.yarnpkg.com/extract-files/-/extract-files-9.0.0.tgz#8a7744f2437f81f5ed3250ed9f1550de902fe54a"
|
||||
integrity sha512-CvdFfHkC95B4bBBk36hcEmvdR2awOdhhVUYH6S/zrVj3477zven/fJMYg7121h4T1xHZC+tetUpubpAhxwI7hQ==
|
||||
|
||||
extract-json-from-string@^1.0.1:
|
||||
version "1.0.1"
|
||||
resolved "https://registry.yarnpkg.com/extract-json-from-string/-/extract-json-from-string-1.0.1.tgz#5001f17e6c905826dcd5989564e130959de60c96"
|
||||
integrity sha512-xfQOSFYbELVs9QVkKsV9FZAjlAmXQ2SLR6FpfFX1kpn4QAvaGBJlrnVOblMLwrLPYc26H+q9qxo6JTd4E7AwgQ==
|
||||
|
||||
extract-zip@^2.0.1:
|
||||
version "2.0.1"
|
||||
resolved "https://registry.yarnpkg.com/extract-zip/-/extract-zip-2.0.1.tgz#663dca56fe46df890d5f131ef4a06d22bb8ba13a"
|
||||
|
@ -4560,6 +4565,13 @@ octokit@^3.1.0:
|
|||
"@octokit/request-error" "^5.0.0"
|
||||
"@octokit/types" "^12.0.0"
|
||||
|
||||
ollama@^0.5.0:
|
||||
version "0.5.0"
|
||||
resolved "https://registry.yarnpkg.com/ollama/-/ollama-0.5.0.tgz#cb9bc709d4d3278c9f484f751b0d9b98b06f4859"
|
||||
integrity sha512-CRtRzsho210EGdK52GrUMohA2pU+7NbgEaBG3DcYeRmvQthDO7E2LHOkLlUUeaYUlNmEd8icbjC02ug9meSYnw==
|
||||
dependencies:
|
||||
whatwg-fetch "^3.6.20"
|
||||
|
||||
on-finished@2.4.1:
|
||||
version "2.4.1"
|
||||
resolved "https://registry.yarnpkg.com/on-finished/-/on-finished-2.4.1.tgz#58c8c44116e54845ad57f14ab10b03533184ac3f"
|
||||
|
@ -5980,7 +5992,7 @@ webidl-conversions@^3.0.0:
|
|||
resolved "https://registry.yarnpkg.com/webidl-conversions/-/webidl-conversions-3.0.1.tgz#24534275e2a7bc6be7bc86611cc16ae0a5654871"
|
||||
integrity sha512-2JAn3z8AR6rjK8Sm8orRC0h/bcl/DqL7tRPdGZ4I1CjdF+EaMLmYxBHyXuKL849eucPFhvBoxMsflfOb8kxaeQ==
|
||||
|
||||
whatwg-fetch@^3.4.1:
|
||||
whatwg-fetch@^3.4.1, whatwg-fetch@^3.6.20:
|
||||
version "3.6.20"
|
||||
resolved "https://registry.yarnpkg.com/whatwg-fetch/-/whatwg-fetch-3.6.20.tgz#580ce6d791facec91d37c72890995a0b48d31c70"
|
||||
integrity sha512-EqhiFU6daOA8kpjOWTL0olhVOF3i7OrFzSYiGsEMB8GcXS+RrzauAERX65xMeNWVqxA6HXH2m69Z9LaKKdisfg==
|
||||
|
|
Loading…
Add table
Reference in a new issue