add support for mistral api ()

* add support for mistral api

* update docs to show support for Mistral

* add default temp to all providers, suggest different results per provider

---------

Co-authored-by: timothycarambat <rambat1010@gmail.com>
This commit is contained in:
Sean Hatfield 2024-01-17 14:42:05 -08:00 committed by GitHub
parent 90df37582b
commit c2c8fe9756
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
25 changed files with 412 additions and 22 deletions
README.md
docker
frontend/src
components
LLMSelection/MistralOptions
Modals/MangeWorkspace/Settings
media/llmprovider
pages
GeneralSettings/LLMPreference
OnboardingFlow/Steps
DataHandling
LLMPreference
server
.env.example
models
utils
AiProviders
anthropic
azureOpenAi
gemini
lmStudio
localAi
mistral
native
ollama
openAi
togetherAi
chats
helpers

View file

@ -71,6 +71,7 @@ Some cool features of AnythingLLM
- [LM Studio (all models)](https://lmstudio.ai)
- [LocalAi (all models)](https://localai.io/)
- [Together AI (chat models)](https://www.together.ai/)
- [Mistral](https://mistral.ai/)
**Supported Embedding models:**

View file

@ -44,6 +44,10 @@ GID='1000'
# TOGETHER_AI_API_KEY='my-together-ai-key'
# TOGETHER_AI_MODEL_PREF='mistralai/Mixtral-8x7B-Instruct-v0.1'
# LLM_PROVIDER='mistral'
# MISTRAL_API_KEY='example-mistral-ai-api-key'
# MISTRAL_MODEL_PREF='mistral-tiny'
###########################################
######## Embedding API SElECTION ##########
###########################################

View file

@ -0,0 +1,103 @@
import { useState, useEffect } from "react";
import System from "@/models/system";
export default function MistralOptions({ settings }) {
const [inputValue, setInputValue] = useState(settings?.MistralApiKey);
const [mistralKey, setMistralKey] = useState(settings?.MistralApiKey);
return (
<div className="flex gap-x-4">
<div className="flex flex-col w-60">
<label className="text-white text-sm font-semibold block mb-4">
Mistral API Key
</label>
<input
type="password"
name="MistralApiKey"
className="bg-zinc-900 text-white placeholder-white placeholder-opacity-60 text-sm rounded-lg focus:border-white block w-full p-2.5"
placeholder="Mistral API Key"
defaultValue={settings?.MistralApiKey ? "*".repeat(20) : ""}
required={true}
autoComplete="off"
spellCheck={false}
onChange={(e) => setInputValue(e.target.value)}
onBlur={() => setMistralKey(inputValue)}
/>
</div>
<MistralModelSelection settings={settings} apiKey={mistralKey} />
</div>
);
}
function MistralModelSelection({ apiKey, settings }) {
const [customModels, setCustomModels] = useState([]);
const [loading, setLoading] = useState(true);
useEffect(() => {
async function findCustomModels() {
if (!apiKey) {
setCustomModels([]);
setLoading(false);
return;
}
setLoading(true);
const { models } = await System.customModels(
"mistral",
typeof apiKey === "boolean" ? null : apiKey
);
setCustomModels(models || []);
setLoading(false);
}
findCustomModels();
}, [apiKey]);
if (loading || customModels.length == 0) {
return (
<div className="flex flex-col w-60">
<label className="text-white text-sm font-semibold block mb-4">
Chat Model Selection
</label>
<select
name="MistralModelPref"
disabled={true}
className="bg-zinc-900 border border-gray-500 text-white text-sm rounded-lg block w-full p-2.5"
>
<option disabled={true} selected={true}>
{!!apiKey
? "-- loading available models --"
: "-- waiting for API key --"}
</option>
</select>
</div>
);
}
return (
<div className="flex flex-col w-60">
<label className="text-white text-sm font-semibold block mb-4">
Chat Model Selection
</label>
<select
name="MistralModelPref"
required={true}
className="bg-zinc-900 border border-gray-500 text-white text-sm rounded-lg block w-full p-2.5"
>
{customModels.length > 0 && (
<optgroup label="Available Mistral Models">
{customModels.map((model) => {
return (
<option
key={model.id}
value={model.id}
selected={settings?.MistralModelPref === model.id}
>
{model.id}
</option>
);
})}
</optgroup>
)}
</select>
</div>
);
}

View file

@ -27,11 +27,21 @@ function castToType(key, value) {
return definitions[key].cast(value);
}
function recommendedSettings(provider = null) {
switch (provider) {
case "mistral":
return { temp: 0 };
default:
return { temp: 0.7 };
}
}
export default function WorkspaceSettings({ active, workspace, settings }) {
const { slug } = useParams();
const formEl = useRef(null);
const [saving, setSaving] = useState(false);
const [hasChanges, setHasChanges] = useState(false);
const defaults = recommendedSettings(settings?.LLMProvider);
const handleUpdate = async (e) => {
setSaving(true);
@ -143,20 +153,20 @@ export default function WorkspaceSettings({ active, workspace, settings }) {
This setting controls how "random" or dynamic your chat
responses will be.
<br />
The higher the number (2.0 maximum) the more random and
The higher the number (1.0 maximum) the more random and
incoherent.
<br />
<i>Recommended: 0.7</i>
<i>Recommended: {defaults.temp}</i>
</p>
</div>
<input
name="openAiTemp"
type="number"
min={0.0}
max={2.0}
max={1.0}
step={0.1}
onWheel={(e) => e.target.blur()}
defaultValue={workspace?.openAiTemp ?? 0.7}
defaultValue={workspace?.openAiTemp ?? defaults.temp}
className="bg-zinc-900 text-white text-sm rounded-lg focus:ring-blue-500 focus:border-blue-500 block w-full p-2.5"
placeholder="0.7"
required={true}

Binary file not shown.

After

(image error) Size: 4.4 KiB

View file

@ -12,6 +12,7 @@ import OllamaLogo from "@/media/llmprovider/ollama.png";
import LMStudioLogo from "@/media/llmprovider/lmstudio.png";
import LocalAiLogo from "@/media/llmprovider/localai.png";
import TogetherAILogo from "@/media/llmprovider/togetherai.png";
import MistralLogo from "@/media/llmprovider/mistral.jpeg";
import PreLoader from "@/components/Preloader";
import OpenAiOptions from "@/components/LLMSelection/OpenAiOptions";
import AzureAiOptions from "@/components/LLMSelection/AzureAiOptions";
@ -21,9 +22,10 @@ import LocalAiOptions from "@/components/LLMSelection/LocalAiOptions";
import NativeLLMOptions from "@/components/LLMSelection/NativeLLMOptions";
import GeminiLLMOptions from "@/components/LLMSelection/GeminiLLMOptions";
import OllamaLLMOptions from "@/components/LLMSelection/OllamaLLMOptions";
import TogetherAiOptions from "@/components/LLMSelection/TogetherAiOptions";
import MistralOptions from "@/components/LLMSelection/MistralOptions";
import LLMItem from "@/components/LLMSelection/LLMItem";
import { MagnifyingGlass } from "@phosphor-icons/react";
import TogetherAiOptions from "@/components/LLMSelection/TogetherAiOptions";
export default function GeneralLLMPreference() {
const [saving, setSaving] = useState(false);
@ -134,6 +136,13 @@ export default function GeneralLLMPreference() {
options: <TogetherAiOptions settings={settings} />,
description: "Run open source models from Together AI.",
},
{
name: "Mistral",
value: "mistral",
logo: MistralLogo,
options: <MistralOptions settings={settings} />,
description: "Run open source models from Mistral AI.",
},
{
name: "Native",
value: "native",

View file

@ -9,6 +9,7 @@ import OllamaLogo from "@/media/llmprovider/ollama.png";
import TogetherAILogo from "@/media/llmprovider/togetherai.png";
import LMStudioLogo from "@/media/llmprovider/lmstudio.png";
import LocalAiLogo from "@/media/llmprovider/localai.png";
import MistralLogo from "@/media/llmprovider/mistral.jpeg";
import ChromaLogo from "@/media/vectordbs/chroma.png";
import PineconeLogo from "@/media/vectordbs/pinecone.png";
import LanceDbLogo from "@/media/vectordbs/lancedb.png";
@ -91,6 +92,13 @@ const LLM_SELECTION_PRIVACY = {
],
logo: TogetherAILogo,
},
mistral: {
name: "Mistral",
description: [
"Your prompts and document text used in response creation are visible to Mistral",
],
logo: MistralLogo,
},
};
const VECTOR_DB_PRIVACY = {

View file

@ -9,6 +9,7 @@ import LMStudioLogo from "@/media/llmprovider/lmstudio.png";
import LocalAiLogo from "@/media/llmprovider/localai.png";
import TogetherAILogo from "@/media/llmprovider/togetherai.png";
import AnythingLLMIcon from "@/media/logo/anything-llm-icon.png";
import MistralLogo from "@/media/llmprovider/mistral.jpeg";
import OpenAiOptions from "@/components/LLMSelection/OpenAiOptions";
import AzureAiOptions from "@/components/LLMSelection/AzureAiOptions";
import AnthropicAiOptions from "@/components/LLMSelection/AnthropicAiOptions";
@ -17,6 +18,7 @@ import LocalAiOptions from "@/components/LLMSelection/LocalAiOptions";
import NativeLLMOptions from "@/components/LLMSelection/NativeLLMOptions";
import GeminiLLMOptions from "@/components/LLMSelection/GeminiLLMOptions";
import OllamaLLMOptions from "@/components/LLMSelection/OllamaLLMOptions";
import MistralOptions from "@/components/LLMSelection/MistralOptions";
import LLMItem from "@/components/LLMSelection/LLMItem";
import System from "@/models/system";
import paths from "@/utils/paths";
@ -109,6 +111,13 @@ export default function LLMPreference({
options: <TogetherAiOptions settings={settings} />,
description: "Run open source models from Together AI.",
},
{
name: "Mistral",
value: "mistral",
logo: MistralLogo,
options: <MistralOptions settings={settings} />,
description: "Run open source models from Mistral AI.",
},
{
name: "Native",
value: "native",

View file

@ -41,6 +41,10 @@ JWT_SECRET="my-random-string-for-seeding" # Please generate random string at lea
# TOGETHER_AI_API_KEY='my-together-ai-key'
# TOGETHER_AI_MODEL_PREF='mistralai/Mixtral-8x7B-Instruct-v0.1'
# LLM_PROVIDER='mistral'
# MISTRAL_API_KEY='example-mistral-ai-api-key'
# MISTRAL_MODEL_PREF='mistral-tiny'
###########################################
######## Embedding API SElECTION ##########
###########################################

View file

@ -159,6 +159,18 @@ const SystemSettings = {
AzureOpenAiEmbeddingModelPref: process.env.EMBEDDING_MODEL_PREF,
}
: {}),
...(llmProvider === "mistral"
? {
MistralApiKey: !!process.env.MISTRAL_API_KEY,
MistralModelPref: process.env.MISTRAL_MODEL_PREF,
// For embedding credentials when mistral is selected.
OpenAiKey: !!process.env.OPEN_AI_KEY,
AzureOpenAiEndpoint: process.env.AZURE_OPENAI_ENDPOINT,
AzureOpenAiKey: !!process.env.AZURE_OPENAI_KEY,
AzureOpenAiEmbeddingModelPref: process.env.EMBEDDING_MODEL_PREF,
}
: {}),
...(llmProvider === "native"
? {
NativeLLMModelPref: process.env.NATIVE_LLM_MODEL_PREF,

View file

@ -26,6 +26,7 @@ class AnthropicLLM {
);
this.embedder = embedder;
this.answerKey = v4().split("-")[0];
this.defaultTemp = 0.7;
}
streamingEnabled() {

View file

@ -25,6 +25,7 @@ class AzureOpenAiLLM {
"No embedding provider defined for AzureOpenAiLLM - falling back to AzureOpenAiEmbedder for embedding!"
);
this.embedder = !embedder ? new AzureOpenAiEmbedder() : embedder;
this.defaultTemp = 0.7;
}
#appendContext(contextTexts = []) {
@ -93,7 +94,7 @@ class AzureOpenAiLLM {
);
const textResponse = await this.openai
.getChatCompletions(this.model, messages, {
temperature: Number(workspace?.openAiTemp ?? 0.7),
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
})
.then((res) => {
@ -130,7 +131,7 @@ class AzureOpenAiLLM {
this.model,
messages,
{
temperature: Number(workspace?.openAiTemp ?? 0.7),
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
}
);

View file

@ -22,6 +22,7 @@ class GeminiLLM {
"INVALID GEMINI LLM SETUP. No embedding engine has been set. Go to instance settings and set up an embedding interface to use Gemini as your LLM."
);
this.embedder = embedder;
this.defaultTemp = 0.7; // not used for Gemini
}
#appendContext(contextTexts = []) {

View file

@ -25,6 +25,7 @@ class LMStudioLLM {
"INVALID LM STUDIO SETUP. No embedding engine has been set. Go to instance settings and set up an embedding interface to use LMStudio as your LLM."
);
this.embedder = embedder;
this.defaultTemp = 0.7;
}
#appendContext(contextTexts = []) {
@ -85,7 +86,7 @@ class LMStudioLLM {
const textResponse = await this.lmstudio
.createChatCompletion({
model: this.model,
temperature: Number(workspace?.openAiTemp ?? 0.7),
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
messages: await this.compressMessages(
{
@ -122,7 +123,7 @@ class LMStudioLLM {
const streamRequest = await this.lmstudio.createChatCompletion(
{
model: this.model,
temperature: Number(workspace?.openAiTemp ?? 0.7),
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
stream: true,
messages: await this.compressMessages(

View file

@ -27,6 +27,7 @@ class LocalAiLLM {
"INVALID LOCAL AI SETUP. No embedding engine has been set. Go to instance settings and set up an embedding interface to use LocalAI as your LLM."
);
this.embedder = embedder;
this.defaultTemp = 0.7;
}
#appendContext(contextTexts = []) {
@ -85,7 +86,7 @@ class LocalAiLLM {
const textResponse = await this.openai
.createChatCompletion({
model: this.model,
temperature: Number(workspace?.openAiTemp ?? 0.7),
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
messages: await this.compressMessages(
{
@ -123,7 +124,7 @@ class LocalAiLLM {
{
model: this.model,
stream: true,
temperature: Number(workspace?.openAiTemp ?? 0.7),
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
messages: await this.compressMessages(
{

View file

@ -0,0 +1,184 @@
const { chatPrompt } = require("../../chats");
class MistralLLM {
constructor(embedder = null, modelPreference = null) {
const { Configuration, OpenAIApi } = require("openai");
if (!process.env.MISTRAL_API_KEY)
throw new Error("No Mistral API key was set.");
const config = new Configuration({
basePath: "https://api.mistral.ai/v1",
apiKey: process.env.MISTRAL_API_KEY,
});
this.openai = new OpenAIApi(config);
this.model =
modelPreference || process.env.MISTRAL_MODEL_PREF || "mistral-tiny";
this.limits = {
history: this.promptWindowLimit() * 0.15,
system: this.promptWindowLimit() * 0.15,
user: this.promptWindowLimit() * 0.7,
};
if (!embedder)
console.warn(
"No embedding provider defined for MistralLLM - falling back to OpenAiEmbedder for embedding!"
);
this.embedder = embedder;
this.defaultTemp = 0.0;
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
streamingEnabled() {
return "streamChat" in this && "streamGetChatCompletion" in this;
}
promptWindowLimit() {
return 32000;
}
async isValidChatCompletionModel(modelName = "") {
return true;
}
constructPrompt({
systemPrompt = "",
contextTexts = [],
chatHistory = [],
userPrompt = "",
}) {
const prompt = {
role: "system",
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
}
async isSafe(_ = "") {
return { safe: true, reasons: [] };
}
async sendChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`Mistral chat: ${this.model} is not valid for chat completion!`
);
const textResponse = await this.openai
.createChatCompletion({
model: this.model,
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
messages: await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
),
})
.then((json) => {
const res = json.data;
if (!res.hasOwnProperty("choices"))
throw new Error("Mistral chat: No results!");
if (res.choices.length === 0)
throw new Error("Mistral chat: No results length!");
return res.choices[0].message.content;
})
.catch((error) => {
throw new Error(
`Mistral::createChatCompletion failed with: ${error.message}`
);
});
return textResponse;
}
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`Mistral chat: ${this.model} is not valid for chat completion!`
);
const streamRequest = await this.openai.createChatCompletion(
{
model: this.model,
stream: true,
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
messages: await this.compressMessages(
{
systemPrompt: chatPrompt(workspace),
userPrompt: prompt,
chatHistory,
},
rawHistory
),
},
{ responseType: "stream" }
);
return streamRequest;
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`Mistral chat: ${this.model} is not valid for chat completion!`
);
const { data } = await this.openai.createChatCompletion({
model: this.model,
messages,
temperature,
});
if (!data.hasOwnProperty("choices")) return null;
return data.choices[0].message.content;
}
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`Mistral chat: ${this.model} is not valid for chat completion!`
);
const streamRequest = await this.openai.createChatCompletion(
{
model: this.model,
stream: true,
messages,
temperature,
},
{ responseType: "stream" }
);
return streamRequest;
}
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
async embedTextInput(textInput) {
return await this.embedder.embedTextInput(textInput);
}
async embedChunks(textChunks = []) {
return await this.embedder.embedChunks(textChunks);
}
async compressMessages(promptArgs = {}, rawHistory = []) {
const { messageArrayCompressor } = require("../../helpers/chat");
const messageArray = this.constructPrompt(promptArgs);
return await messageArrayCompressor(this, messageArray, rawHistory);
}
}
module.exports = {
MistralLLM,
};

View file

@ -29,6 +29,7 @@ class NativeLLM {
// Make directory when it does not exist in existing installations
if (!fs.existsSync(this.cacheDir)) fs.mkdirSync(this.cacheDir);
this.defaultTemp = 0.7;
}
async #initializeLlamaModel(temperature = 0.7) {
@ -132,7 +133,7 @@ class NativeLLM {
);
const model = await this.#llamaClient({
temperature: Number(workspace?.openAiTemp ?? 0.7),
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
});
const response = await model.call(messages);
return response.content;
@ -145,7 +146,7 @@ class NativeLLM {
async streamChat(chatHistory = [], prompt, workspace = {}, rawHistory = []) {
const model = await this.#llamaClient({
temperature: Number(workspace?.openAiTemp ?? 0.7),
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
});
const messages = await this.compressMessages(
{

View file

@ -20,6 +20,7 @@ class OllamaAILLM {
"INVALID OLLAMA SETUP. No embedding engine has been set. Go to instance settings and set up an embedding interface to use Ollama as your LLM."
);
this.embedder = embedder;
this.defaultTemp = 0.7;
}
#ollamaClient({ temperature = 0.07 }) {
@ -113,7 +114,7 @@ class OllamaAILLM {
);
const model = this.#ollamaClient({
temperature: Number(workspace?.openAiTemp ?? 0.7),
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
});
const textResponse = await model
.pipe(new StringOutputParser())
@ -136,7 +137,7 @@ class OllamaAILLM {
);
const model = this.#ollamaClient({
temperature: Number(workspace?.openAiTemp ?? 0.7),
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
});
const stream = await model
.pipe(new StringOutputParser())

View file

@ -23,6 +23,7 @@ class OpenAiLLM {
"No embedding provider defined for OpenAiLLM - falling back to OpenAiEmbedder for embedding!"
);
this.embedder = !embedder ? new OpenAiEmbedder() : embedder;
this.defaultTemp = 0.7;
}
#appendContext(contextTexts = []) {
@ -127,7 +128,7 @@ class OpenAiLLM {
const textResponse = await this.openai
.createChatCompletion({
model: this.model,
temperature: Number(workspace?.openAiTemp ?? 0.7),
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
messages: await this.compressMessages(
{
@ -165,7 +166,7 @@ class OpenAiLLM {
{
model: this.model,
stream: true,
temperature: Number(workspace?.openAiTemp ?? 0.7),
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
messages: await this.compressMessages(
{

View file

@ -28,6 +28,7 @@ class TogetherAiLLM {
"INVALID TOGETHER AI SETUP. No embedding engine has been set. Go to instance settings and set up an embedding interface to use Together AI as your LLM."
);
this.embedder = embedder;
this.defaultTemp = 0.7;
}
#appendContext(contextTexts = []) {
@ -89,7 +90,7 @@ class TogetherAiLLM {
const textResponse = await this.openai
.createChatCompletion({
model: this.model,
temperature: Number(workspace?.openAiTemp ?? 0.7),
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
messages: await this.compressMessages(
{
@ -127,7 +128,7 @@ class TogetherAiLLM {
{
model: this.model,
stream: true,
temperature: Number(workspace?.openAiTemp ?? 0.7),
temperature: Number(workspace?.openAiTemp ?? this.defaultTemp),
n: 1,
messages: await this.compressMessages(
{

View file

@ -171,7 +171,7 @@ async function chatWithWorkspace(
// Send the text completion.
const textResponse = await LLMConnector.getChatCompletion(messages, {
temperature: workspace?.openAiTemp ?? 0.7,
temperature: workspace?.openAiTemp ?? LLMConnector.defaultTemp,
});
if (!textResponse) {

View file

@ -141,7 +141,7 @@ async function streamChatWithWorkspace(
`\x1b[31m[STREAMING DISABLED]\x1b[0m Streaming is not available for ${LLMConnector.constructor.name}. Will use regular chat method.`
);
completeText = await LLMConnector.getChatCompletion(messages, {
temperature: workspace?.openAiTemp ?? 0.7,
temperature: workspace?.openAiTemp ?? LLMConnector.defaultTemp,
});
writeResponseChunk(response, {
uuid,
@ -153,7 +153,7 @@ async function streamChatWithWorkspace(
});
} else {
const stream = await LLMConnector.streamGetChatCompletion(messages, {
temperature: workspace?.openAiTemp ?? 0.7,
temperature: workspace?.openAiTemp ?? LLMConnector.defaultTemp,
});
completeText = await handleStreamResponses(response, stream, {
uuid,

View file

@ -5,6 +5,7 @@ const SUPPORT_CUSTOM_MODELS = [
"ollama",
"native-llm",
"togetherai",
"mistral",
];
async function getCustomModels(provider = "", apiKey = null, basePath = null) {
@ -20,6 +21,8 @@ async function getCustomModels(provider = "", apiKey = null, basePath = null) {
return await ollamaAIModels(basePath);
case "togetherai":
return await getTogetherAiModels();
case "mistral":
return await getMistralModels(apiKey);
case "native-llm":
return nativeLLMModels();
default:
@ -117,6 +120,26 @@ async function getTogetherAiModels() {
return { models, error: null };
}
async function getMistralModels(apiKey = null) {
const { Configuration, OpenAIApi } = require("openai");
const config = new Configuration({
apiKey: apiKey || process.env.MISTRAL_API_KEY,
basePath: "https://api.mistral.ai/v1",
});
const openai = new OpenAIApi(config);
const models = await openai
.listModels()
.then((res) => res.data.data.filter((model) => !model.id.includes("embed")))
.catch((e) => {
console.error(`Mistral:listModels`, e.message);
return [];
});
// Api Key was successful so lets save it for future uses
if (models.length > 0 && !!apiKey) process.env.MISTRAL_API_KEY = apiKey;
return { models, error: null };
}
function nativeLLMModels() {
const fs = require("fs");
const path = require("path");

View file

@ -52,6 +52,9 @@ function getLLMProvider(modelPreference = null) {
case "togetherai":
const { TogetherAiLLM } = require("../AiProviders/togetherAi");
return new TogetherAiLLM(embedder, modelPreference);
case "mistral":
const { MistralLLM } = require("../AiProviders/mistral");
return new MistralLLM(embedder, modelPreference);
case "native":
const { NativeLLM } = require("../AiProviders/native");
return new NativeLLM(embedder, modelPreference);
@ -76,6 +79,7 @@ function getEmbeddingEngineSelection() {
return new LocalAiEmbedder();
case "native":
const { NativeEmbedder } = require("../EmbeddingEngines/native");
console.log("\x1b[34m[INFO]\x1b[0m Using Native Embedder");
return new NativeEmbedder();
default:
return null;

View file

@ -95,6 +95,15 @@ const KEY_MAPPING = {
checks: [nonZero],
},
MistralApiKey: {
envKey: "MISTRAL_API_KEY",
checks: [isNotEmpty],
},
MistralModelPref: {
envKey: "MISTRAL_MODEL_PREF",
checks: [isNotEmpty],
},
// Native LLM Settings
NativeLLMModelPref: {
envKey: "NATIVE_LLM_MODEL_PREF",
@ -268,6 +277,7 @@ function supportedLLM(input = "") {
"ollama",
"native",
"togetherai",
"mistral",
].includes(input);
return validSelection ? null : `${input} is not a valid LLM provider.`;
}