Add LMStudio embedding endpoint support ()

* Add LMStudio embedding endpoint support

* update alive path check for HEAD
remove commented JSX

* update comment
This commit is contained in:
Timothy Carambat 2024-04-19 15:36:07 -07:00 committed by GitHub
parent c009904664
commit c65f890afc
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
10 changed files with 321 additions and 44 deletions
README.md
docker
frontend/src
components/EmbeddingSelection/LMStudioOptions
pages
GeneralSettings/EmbeddingPreference
OnboardingFlow/Steps
DataHandling
EmbeddingPreference
server
.env.example
utils
EmbeddingEngines/lmstudio
helpers

View file

@ -85,7 +85,7 @@ Some cool features of AnythingLLM
- [Azure OpenAI](https://azure.microsoft.com/en-us/products/ai-services/openai-service)
- [LocalAi (all)](https://localai.io/)
- [Ollama (all)](https://ollama.ai/)
<!-- - [LM Studio (all)](https://lmstudio.ai) -->
- [LM Studio (all)](https://lmstudio.ai)
**Supported Transcription models:**

View file

@ -85,10 +85,15 @@ GID='1000'
# EMBEDDING_MODEL_MAX_CHUNK_LENGTH=1000 # The max chunk size in chars a string to embed can be
# EMBEDDING_ENGINE='ollama'
# EMBEDDING_BASE_PATH='http://127.0.0.1:11434'
# EMBEDDING_BASE_PATH='http://host.docker.internal:11434'
# EMBEDDING_MODEL_PREF='nomic-embed-text:latest'
# EMBEDDING_MODEL_MAX_CHUNK_LENGTH=8192
# EMBEDDING_ENGINE='lmstudio'
# EMBEDDING_BASE_PATH='https://host.docker.internal:1234/v1'
# EMBEDDING_MODEL_PREF='nomic-ai/nomic-embed-text-v1.5-GGUF/nomic-embed-text-v1.5.Q4_0.gguf'
# EMBEDDING_MODEL_MAX_CHUNK_LENGTH=8192
###########################################
######## Vector Database Selection ########
###########################################

View file

@ -0,0 +1,120 @@
import React, { useEffect, useState } from "react";
import System from "@/models/system";
export default function LMStudioEmbeddingOptions({ settings }) {
const [basePathValue, setBasePathValue] = useState(
settings?.EmbeddingBasePath
);
const [basePath, setBasePath] = useState(settings?.EmbeddingBasePath);
return (
<div className="w-full flex flex-col gap-y-4">
<div className="w-full flex items-center gap-4">
<div className="flex flex-col w-60">
<label className="text-white text-sm font-semibold block mb-4">
LMStudio Base URL
</label>
<input
type="url"
name="EmbeddingBasePath"
className="bg-zinc-900 text-white placeholder-white/20 text-sm rounded-lg focus:border-white block w-full p-2.5"
placeholder="http://localhost:1234/v1"
defaultValue={settings?.EmbeddingBasePath}
onChange={(e) => setBasePathValue(e.target.value)}
onBlur={() => setBasePath(basePathValue)}
required={true}
autoComplete="off"
spellCheck={false}
/>
</div>
<LMStudioModelSelection settings={settings} basePath={basePath} />
<div className="flex flex-col w-60">
<label className="text-white text-sm font-semibold block mb-4">
Max embedding chunk length
</label>
<input
type="number"
name="EmbeddingModelMaxChunkLength"
className="bg-zinc-900 text-white placeholder-white/20 text-sm rounded-lg focus:border-white block w-full p-2.5"
placeholder="8192"
min={1}
onScroll={(e) => e.target.blur()}
defaultValue={settings?.EmbeddingModelMaxChunkLength}
required={false}
autoComplete="off"
/>
</div>
</div>
</div>
);
}
function LMStudioModelSelection({ settings, basePath = null }) {
const [customModels, setCustomModels] = useState([]);
const [loading, setLoading] = useState(true);
useEffect(() => {
async function findCustomModels() {
if (!basePath || !basePath.includes("/v1")) {
setCustomModels([]);
setLoading(false);
return;
}
setLoading(true);
const { models } = await System.customModels("lmstudio", null, basePath);
setCustomModels(models || []);
setLoading(false);
}
findCustomModels();
}, [basePath]);
if (loading || customModels.length == 0) {
return (
<div className="flex flex-col w-60">
<label className="text-white text-sm font-semibold block mb-4">
Chat Model Selection
</label>
<select
name="EmbeddingModelPref"
disabled={true}
className="bg-zinc-900 border-gray-500 text-white text-sm rounded-lg block w-full p-2.5"
>
<option disabled={true} selected={true}>
{basePath?.includes("/v1")
? "-- loading available models --"
: "-- waiting for URL --"}
</option>
</select>
</div>
);
}
return (
<div className="flex flex-col w-60">
<label className="text-white text-sm font-semibold block mb-4">
Chat Model Selection
</label>
<select
name="EmbeddingModelPref"
required={true}
className="bg-zinc-900 border-gray-500 text-white text-sm rounded-lg block w-full p-2.5"
>
{customModels.length > 0 && (
<optgroup label="Your loaded models">
{customModels.map((model) => {
return (
<option
key={model.id}
value={model.id}
selected={settings.EmbeddingModelPref === model.id}
>
{model.id}
</option>
);
})}
</optgroup>
)}
</select>
</div>
);
}

View file

@ -8,6 +8,7 @@ import OpenAiLogo from "@/media/llmprovider/openai.png";
import AzureOpenAiLogo from "@/media/llmprovider/azure.png";
import LocalAiLogo from "@/media/llmprovider/localai.png";
import OllamaLogo from "@/media/llmprovider/ollama.png";
import LMStudioLogo from "@/media/llmprovider/lmstudio.png";
import PreLoader from "@/components/Preloader";
import ChangeWarningModal from "@/components/ChangeWarning";
import OpenAiOptions from "@/components/EmbeddingSelection/OpenAiOptions";
@ -15,6 +16,7 @@ import AzureAiOptions from "@/components/EmbeddingSelection/AzureAiOptions";
import LocalAiOptions from "@/components/EmbeddingSelection/LocalAiOptions";
import NativeEmbeddingOptions from "@/components/EmbeddingSelection/NativeEmbeddingOptions";
import OllamaEmbeddingOptions from "@/components/EmbeddingSelection/OllamaOptions";
import LMStudioEmbeddingOptions from "@/components/EmbeddingSelection/LMStudioOptions";
import EmbedderItem from "@/components/EmbeddingSelection/EmbedderItem";
import { CaretUpDown, MagnifyingGlass, X } from "@phosphor-icons/react";
import { useModal } from "@/hooks/useModal";
@ -58,6 +60,14 @@ const EMBEDDERS = [
options: (settings) => <OllamaEmbeddingOptions settings={settings} />,
description: "Run embedding models locally on your own machine.",
},
{
name: "LM Studio",
value: "lmstudio",
logo: LMStudioLogo,
options: (settings) => <LMStudioEmbeddingOptions settings={settings} />,
description:
"Discover, download, and run thousands of cutting edge LLMs in a few clicks.",
},
];
export default function GeneralEmbeddingPreference() {

View file

@ -237,6 +237,13 @@ export const EMBEDDING_ENGINE_PRIVACY = {
],
logo: OllamaLogo,
},
lmstudio: {
name: "LMStudio",
description: [
"Your document text is embedded privately on the server running LMStudio",
],
logo: LMStudioLogo,
},
};
export default function DataHandling({ setHeader, setForwardBtn, setBackBtn }) {

View file

@ -5,11 +5,13 @@ import OpenAiLogo from "@/media/llmprovider/openai.png";
import AzureOpenAiLogo from "@/media/llmprovider/azure.png";
import LocalAiLogo from "@/media/llmprovider/localai.png";
import OllamaLogo from "@/media/llmprovider/ollama.png";
import LMStudioLogo from "@/media/llmprovider/lmstudio.png";
import NativeEmbeddingOptions from "@/components/EmbeddingSelection/NativeEmbeddingOptions";
import OpenAiOptions from "@/components/EmbeddingSelection/OpenAiOptions";
import AzureAiOptions from "@/components/EmbeddingSelection/AzureAiOptions";
import LocalAiOptions from "@/components/EmbeddingSelection/LocalAiOptions";
import OllamaEmbeddingOptions from "@/components/EmbeddingSelection/OllamaOptions";
import LMStudioEmbeddingOptions from "@/components/EmbeddingSelection/LMStudioOptions";
import EmbedderItem from "@/components/EmbeddingSelection/EmbedderItem";
import System from "@/models/system";
import paths from "@/utils/paths";
@ -19,6 +21,52 @@ import { useNavigate } from "react-router-dom";
const TITLE = "Embedding Preference";
const DESCRIPTION =
"AnythingLLM can work with many embedding models. This will be the model which turns documents into vectors.";
const EMBEDDERS = [
{
name: "AnythingLLM Embedder",
value: "native",
logo: AnythingLLMIcon,
options: (settings) => <NativeEmbeddingOptions settings={settings} />,
description:
"Use the built-in embedding engine for AnythingLLM. Zero setup!",
},
{
name: "OpenAI",
value: "openai",
logo: OpenAiLogo,
options: (settings) => <OpenAiOptions settings={settings} />,
description: "The standard option for most non-commercial use.",
},
{
name: "Azure OpenAI",
value: "azure",
logo: AzureOpenAiLogo,
options: (settings) => <AzureAiOptions settings={settings} />,
description: "The enterprise option of OpenAI hosted on Azure services.",
},
{
name: "Local AI",
value: "localai",
logo: LocalAiLogo,
options: (settings) => <LocalAiOptions settings={settings} />,
description: "Run embedding models locally on your own machine.",
},
{
name: "Ollama",
value: "ollama",
logo: OllamaLogo,
options: (settings) => <OllamaEmbeddingOptions settings={settings} />,
description: "Run embedding models locally on your own machine.",
},
{
name: "LM Studio",
value: "lmstudio",
logo: LMStudioLogo,
options: (settings) => <LMStudioEmbeddingOptions settings={settings} />,
description:
"Discover, download, and run thousands of cutting edge LLMs in a few clicks.",
},
];
export default function EmbeddingPreference({
setHeader,
@ -42,45 +90,6 @@ export default function EmbeddingPreference({
fetchKeys();
}, []);
const EMBEDDERS = [
{
name: "AnythingLLM Embedder",
value: "native",
logo: AnythingLLMIcon,
options: <NativeEmbeddingOptions settings={settings} />,
description:
"Use the built-in embedding engine for AnythingLLM. Zero setup!",
},
{
name: "OpenAI",
value: "openai",
logo: OpenAiLogo,
options: <OpenAiOptions settings={settings} />,
description: "The standard option for most non-commercial use.",
},
{
name: "Azure OpenAI",
value: "azure",
logo: AzureOpenAiLogo,
options: <AzureAiOptions settings={settings} />,
description: "The enterprise option of OpenAI hosted on Azure services.",
},
{
name: "Local AI",
value: "localai",
logo: LocalAiLogo,
options: <LocalAiOptions settings={settings} />,
description: "Run embedding models locally on your own machine.",
},
{
name: "Ollama",
value: "ollama",
logo: OllamaLogo,
options: <OllamaEmbeddingOptions settings={settings} />,
description: "Run embedding models locally on your own machine.",
},
];
function handleForward() {
if (hiddenSubmitButtonRef.current) {
hiddenSubmitButtonRef.current.click();
@ -161,8 +170,9 @@ export default function EmbeddingPreference({
</div>
<div className="mt-4 flex flex-col gap-y-1">
{selectedEmbedder &&
EMBEDDERS.find((embedder) => embedder.value === selectedEmbedder)
?.options}
EMBEDDERS.find(
(embedder) => embedder.value === selectedEmbedder
)?.options(settings)}
</div>
<button
type="submit"

View file

@ -86,6 +86,11 @@ JWT_SECRET="my-random-string-for-seeding" # Please generate random string at lea
# EMBEDDING_MODEL_PREF='nomic-embed-text:latest'
# EMBEDDING_MODEL_MAX_CHUNK_LENGTH=8192
# EMBEDDING_ENGINE='lmstudio'
# EMBEDDING_BASE_PATH='https://localhost:1234/v1'
# EMBEDDING_MODEL_PREF='nomic-ai/nomic-embed-text-v1.5-GGUF/nomic-embed-text-v1.5.Q4_0.gguf'
# EMBEDDING_MODEL_MAX_CHUNK_LENGTH=8192
###########################################
######## Vector Database Selection ########
###########################################

View file

@ -0,0 +1,110 @@
const { maximumChunkLength } = require("../../helpers");
class LMStudioEmbedder {
constructor() {
if (!process.env.EMBEDDING_BASE_PATH)
throw new Error("No embedding base path was set.");
if (!process.env.EMBEDDING_MODEL_PREF)
throw new Error("No embedding model was set.");
this.basePath = `${process.env.EMBEDDING_BASE_PATH}/embeddings`;
this.model = process.env.EMBEDDING_MODEL_PREF;
// Limit of how many strings we can process in a single pass to stay with resource or network limits
// Limit of how many strings we can process in a single pass to stay with resource or network limits
this.maxConcurrentChunks = 1;
this.embeddingMaxChunkLength = maximumChunkLength();
}
log(text, ...args) {
console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args);
}
async #isAlive() {
return await fetch(`${this.basePath}/models`, {
method: "HEAD",
})
.then((res) => res.ok)
.catch((e) => {
this.log(e.message);
return false;
});
}
async embedTextInput(textInput) {
const result = await this.embedChunks(textInput);
return result?.[0] || [];
}
async embedChunks(textChunks = []) {
if (!(await this.#isAlive()))
throw new Error(
`LMStudio service could not be reached. Is LMStudio running?`
);
this.log(
`Embedding ${textChunks.length} chunks of text with ${this.model}.`
);
// LMStudio will drop all queued requests now? So if there are many going on
// we need to do them sequentially or else only the first resolves and the others
// get dropped or go unanswered >:(
let results = [];
let hasError = false;
for (const chunk of textChunks) {
if (hasError) break; // If an error occurred don't continue and exit early.
results.push(
await fetch(this.basePath, {
method: "POST",
headers: {
"Content-Type": "application/json",
},
body: JSON.stringify({
model: this.model,
input: chunk,
}),
})
.then((res) => res.json())
.then((json) => {
const embedding = json.data[0].embedding;
if (!Array.isArray(embedding) || !embedding.length)
throw {
type: "EMPTY_ARR",
message: "The embedding was empty from LMStudio",
};
return { data: embedding, error: null };
})
.catch((error) => {
hasError = true;
return { data: [], error };
})
);
}
// Accumulate errors from embedding.
// If any are present throw an abort error.
const errors = results
.filter((res) => !!res.error)
.map((res) => res.error)
.flat();
if (errors.length > 0) {
let uniqueErrors = new Set();
console.log(errors);
errors.map((error) =>
uniqueErrors.add(`[${error.type}]: ${error.message}`)
);
if (errors.length > 0)
throw new Error(
`LMStudio Failed to embed: ${Array.from(uniqueErrors).join(", ")}`
);
}
const data = results.map((res) => res?.data || []);
return data.length > 0 ? data : null;
}
}
module.exports = {
LMStudioEmbedder,
};

View file

@ -102,6 +102,9 @@ function getEmbeddingEngineSelection() {
case "native":
const { NativeEmbedder } = require("../EmbeddingEngines/native");
return new NativeEmbedder();
case "lmstudio":
const { LMStudioEmbedder } = require("../EmbeddingEngines/lmstudio");
return new LMStudioEmbedder();
default:
return null;
}

View file

@ -408,7 +408,14 @@ function validAnthropicModel(input = "") {
}
function supportedEmbeddingModel(input = "") {
const supported = ["openai", "azure", "localai", "native", "ollama"];
const supported = [
"openai",
"azure",
"localai",
"native",
"ollama",
"lmstudio",
];
return supported.includes(input)
? null
: `Invalid Embedding model type. Must be one of ${supported.join(", ")}.`;