diff --git a/.vscode/settings.json b/.vscode/settings.json
index c8c7ea995..dde2d134b 100644
--- a/.vscode/settings.json
+++ b/.vscode/settings.json
@@ -1,6 +1,7 @@
 {
   "cSpell.words": [
     "openai",
+    "Qdrant",
     "Weaviate"
   ]
 }
\ No newline at end of file
diff --git a/docker/.env.example b/docker/.env.example
index 77550b6f0..70c61ef96 100644
--- a/docker/.env.example
+++ b/docker/.env.example
@@ -37,6 +37,11 @@ PINECONE_INDEX=
 # WEAVIATE_ENDPOINT="http://localhost:8080"
 # WEAVIATE_API_KEY=
 
+# Enable all below if you are using vector database: Qdrant.
+# VECTOR_DB="qdrant"
+# QDRANT_ENDPOINT="http://localhost:6333"
+# QDRANT_API_KEY=
+
 # CLOUD DEPLOYMENT VARIRABLES ONLY
 # AUTH_TOKEN="hunter2" # This is the password to your application if remote hosting.
 # NO_DEBUG="true"
diff --git a/frontend/src/components/Modals/Settings/VectorDbs/index.jsx b/frontend/src/components/Modals/Settings/VectorDbs/index.jsx
index b1a5a97b5..ec25e0a7e 100644
--- a/frontend/src/components/Modals/Settings/VectorDbs/index.jsx
+++ b/frontend/src/components/Modals/Settings/VectorDbs/index.jsx
@@ -4,6 +4,7 @@ import ChromaLogo from "../../../../media/vectordbs/chroma.png";
 import PineconeLogo from "../../../../media/vectordbs/pinecone.png";
 import LanceDbLogo from "../../../../media/vectordbs/lancedb.png";
 import WeaviateLogo from "../../../../media/vectordbs/weaviate.png";
+import QDrantLogo from "../../../../media/vectordbs/qdrant.png";
 
 const noop = () => false;
 export default function VectorDBSelection({
@@ -80,6 +81,15 @@ export default function VectorDBSelection({
                   image={PineconeLogo}
                   onClick={updateVectorChoice}
                 />
+                <VectorDBOption
+                  name="QDrant"
+                  value="qdrant"
+                  link="qdrant.tech"
+                  description="Open source local and distributed cloud vector database."
+                  checked={vectorDB === "qdrant"}
+                  image={QDrantLogo}
+                  onClick={updateVectorChoice}
+                />
                 <VectorDBOption
                   name="Weaviate"
                   value="weaviate"
@@ -181,6 +191,41 @@ export default function VectorDBSelection({
                   </p>
                 </div>
               )}
+              {vectorDB === "qdrant" && (
+                <>
+                  <div>
+                    <label className="block mb-2 text-sm font-medium text-gray-800 dark:text-slate-200">
+                      QDrant API Endpoint
+                    </label>
+                    <input
+                      type="url"
+                      name="QdrantEndpoint"
+                      disabled={!canDebug}
+                      className="bg-gray-50 border border-gray-500 text-gray-900 placeholder-gray-500 text-sm rounded-lg dark:bg-stone-700 focus:border-stone-500 block w-full p-2.5 dark:text-slate-200 dark:placeholder-stone-500 dark:border-slate-200"
+                      placeholder="http://localhost:6633"
+                      defaultValue={settings?.QdrantEndpoint}
+                      required={true}
+                      autoComplete="off"
+                      spellCheck={false}
+                    />
+                  </div>
+                  <div>
+                    <label className="block mb-2 text-sm font-medium text-gray-800 dark:text-slate-200">
+                      Api Key
+                    </label>
+                    <input
+                      type="password"
+                      name="QdrantApiKey"
+                      disabled={!canDebug}
+                      className="bg-gray-50 border border-gray-500 text-gray-900 placeholder-gray-500 text-sm rounded-lg dark:bg-stone-700 focus:border-stone-500 block w-full p-2.5 dark:text-slate-200 dark:placeholder-stone-500 dark:border-slate-200"
+                      placeholder="wOeqxsYP4....1244sba"
+                      defaultValue={settings?.QdrantApiKey}
+                      autoComplete="off"
+                      spellCheck={false}
+                    />
+                  </div>
+                </>
+              )}
               {vectorDB === "weaviate" && (
                 <>
                   <div>
diff --git a/frontend/src/media/vectordbs/qdrant.png b/frontend/src/media/vectordbs/qdrant.png
new file mode 100644
index 000000000..d63e720c5
Binary files /dev/null and b/frontend/src/media/vectordbs/qdrant.png differ
diff --git a/server/.env.example b/server/.env.example
index 606dd8988..ff92295ec 100644
--- a/server/.env.example
+++ b/server/.env.example
@@ -36,6 +36,11 @@ PINECONE_INDEX=
 # WEAVIATE_ENDPOINT="http://localhost:8080"
 # WEAVIATE_API_KEY=
 
+# Enable all below if you are using vector database: Qdrant.
+# VECTOR_DB="qdrant"
+# QDRANT_ENDPOINT="http://localhost:6333"
+# QDRANT_API_KEY=
+
 
 # CLOUD DEPLOYMENT VARIRABLES ONLY
 # AUTH_TOKEN="hunter2" # This is the password to your application if remote hosting.
diff --git a/server/endpoints/system.js b/server/endpoints/system.js
index 73041e183..d0b48cc62 100644
--- a/server/endpoints/system.js
+++ b/server/endpoints/system.js
@@ -78,6 +78,12 @@ function systemEndpoints(app) {
               WeaviateApiKey: process.env.WEAVIATE_API_KEY,
             }
           : {}),
+        ...(vectorDB === "qdrant"
+          ? {
+              QdrantEndpoint: process.env.QDRANT_ENDPOINT,
+              QdrantApiKey: process.env.QDRANT_API_KEY,
+            }
+          : {}),
         LLMProvider: llmProvider,
         ...(llmProvider === "openai"
           ? {
diff --git a/server/package.json b/server/package.json
index b2f5bdc8a..15bbff6f6 100644
--- a/server/package.json
+++ b/server/package.json
@@ -18,6 +18,7 @@
     "@azure/openai": "^1.0.0-beta.3",
     "@googleapis/youtube": "^9.0.0",
     "@pinecone-database/pinecone": "^0.1.6",
+    "@qdrant/js-client-rest": "^1.4.0",
     "archiver": "^5.3.1",
     "bcrypt": "^5.1.0",
     "body-parser": "^1.20.2",
diff --git a/server/utils/helpers/index.js b/server/utils/helpers/index.js
index b7fb5ae00..b077606ad 100644
--- a/server/utils/helpers/index.js
+++ b/server/utils/helpers/index.js
@@ -13,6 +13,9 @@ function getVectorDbClass() {
     case "weaviate":
       const { Weaviate } = require("../vectorDbProviders/weaviate");
       return Weaviate;
+    case "qdrant":
+      const { QDrant } = require("../vectorDbProviders/qdrant");
+      return QDrant;
     default:
       throw new Error("ENV: No VECTOR_DB value found in environment!");
   }
diff --git a/server/utils/helpers/updateENV.js b/server/utils/helpers/updateENV.js
index 9f00ec423..d08f25c7a 100644
--- a/server/utils/helpers/updateENV.js
+++ b/server/utils/helpers/updateENV.js
@@ -47,6 +47,14 @@ const KEY_MAPPING = {
     envKey: "WEAVIATE_API_KEY",
     checks: [],
   },
+  QdrantEndpoint: {
+    envKey: "QDRANT_ENDPOINT",
+    checks: [isValidURL],
+  },
+  QdrantApiKey: {
+    envKey: "QDRANT_API_KEY",
+    checks: [],
+  },
 
   PineConeEnvironment: {
     envKey: "PINECONE_ENVIRONMENT",
@@ -112,7 +120,7 @@ function validOpenAIModel(input = "") {
 }
 
 function supportedVectorDB(input = "") {
-  const supported = ["chroma", "pinecone", "lancedb", "weaviate"];
+  const supported = ["chroma", "pinecone", "lancedb", "weaviate", "qdrant"];
   return supported.includes(input)
     ? null
     : `Invalid VectorDB type. Must be one of ${supported.join(", ")}.`;
diff --git a/server/utils/vectorDbProviders/qdrant/index.js b/server/utils/vectorDbProviders/qdrant/index.js
new file mode 100644
index 000000000..0dc39e790
--- /dev/null
+++ b/server/utils/vectorDbProviders/qdrant/index.js
@@ -0,0 +1,397 @@
+const { QdrantClient } = require("@qdrant/js-client-rest");
+const { RecursiveCharacterTextSplitter } = require("langchain/text_splitter");
+const { storeVectorResult, cachedVectorInformation } = require("../../files");
+const { v4: uuidv4 } = require("uuid");
+const { toChunks, getLLMProvider } = require("../../helpers");
+const { chatPrompt } = require("../../chats");
+
+const QDrant = {
+  name: "QDrant",
+  connect: async function () {
+    if (process.env.VECTOR_DB !== "qdrant")
+      throw new Error("QDrant::Invalid ENV settings");
+
+    const client = new QdrantClient({
+      url: process.env.QDRANT_ENDPOINT,
+      ...(process.env.QDRANT_API_KEY
+        ? { apiKey: process.env.QDRANT_API_KEY }
+        : {}),
+    });
+
+    const isAlive = (await client.api("cluster")?.clusterStatus())?.ok || false;
+    if (!isAlive)
+      throw new Error(
+        "QDrant::Invalid Heartbeat received - is the instance online?"
+      );
+
+    return { client };
+  },
+  heartbeat: async function () {
+    await this.connect();
+    return { heartbeat: Number(new Date()) };
+  },
+  totalIndicies: async function () {
+    const { client } = await this.connect();
+    const { collections } = await client.getCollections();
+    var totalVectors = 0;
+    for (const collection of collections) {
+      if (!collection || !collection.name) continue;
+      totalVectors +=
+        (await this.namespace(client, collection.name))?.vectorCount || 0;
+    }
+    return totalVectors;
+  },
+  namespaceCount: async function (_namespace = null) {
+    const { client } = await this.connect();
+    const namespace = await this.namespace(client, _namespace);
+    return namespace?.vectorCount || 0;
+  },
+  similarityResponse: async function (_client, namespace, queryVector) {
+    const { client } = await this.connect();
+    const result = {
+      contextTexts: [],
+      sourceDocuments: [],
+    };
+
+    const responses = await client.search(namespace, {
+      vector: queryVector,
+      limit: 4,
+    });
+
+    responses.forEach((response) => {
+      result.contextTexts.push(response?.payload?.text || "");
+      result.sourceDocuments.push({
+        ...(response?.payload || {}),
+        id: response.id,
+      });
+    });
+
+    return result;
+  },
+  namespace: async function (client, namespace = null) {
+    if (!namespace) throw new Error("No namespace value provided.");
+    const collection = await client.getCollection(namespace).catch(() => null);
+    if (!collection) return null;
+
+    return {
+      name: namespace,
+      ...collection,
+      vectorCount: collection.vectors_count,
+    };
+  },
+  hasNamespace: async function (namespace = null) {
+    if (!namespace) return false;
+    const { client } = await this.connect();
+    return await this.namespaceExists(client, namespace);
+  },
+  namespaceExists: async function (client, namespace = null) {
+    if (!namespace) throw new Error("No namespace value provided.");
+    const collection = await client.getCollection(namespace).catch((e) => {
+      console.error("QDrant::namespaceExists", e.message);
+      return null;
+    });
+    return !!collection;
+  },
+  deleteVectorsInNamespace: async function (client, namespace = null) {
+    await client.deleteCollection(namespace);
+    return true;
+  },
+  getOrCreateCollection: async function (client, namespace) {
+    if (await this.namespaceExists(client, namespace)) {
+      return await client.getCollection(namespace);
+    }
+    await client.createCollection(namespace, {
+      vectors: {
+        size: 1536, //TODO: Fixed to OpenAI models - when other embeddings exist make variable.
+        distance: "Cosine",
+      },
+    });
+    return await client.getCollection(namespace);
+  },
+  addDocumentToNamespace: async function (
+    namespace,
+    documentData = {},
+    fullFilePath = null
+  ) {
+    const { DocumentVectors } = require("../../../models/vectors");
+    try {
+      const { pageContent, docId, ...metadata } = documentData;
+      if (!pageContent || pageContent.length == 0) return false;
+
+      console.log("Adding new vectorized document into namespace", namespace);
+      const cacheResult = await cachedVectorInformation(fullFilePath);
+      if (cacheResult.exists) {
+        const { client } = await this.connect();
+        const collection = await this.getOrCreateCollection(client, namespace);
+        if (!collection)
+          throw new Error("Failed to create new QDrant collection!", {
+            namespace,
+          });
+
+        const { chunks } = cacheResult;
+        const documentVectors = [];
+
+        for (const chunk of chunks) {
+          const submission = {
+            ids: [],
+            vectors: [],
+            payloads: [],
+          };
+
+          // Before sending to Qdrant and saving the records to our db
+          // we need to assign the id of each chunk that is stored in the cached file.
+          chunk.forEach((chunk) => {
+            const id = uuidv4();
+            const { id: _id, ...payload } = chunk.payload;
+            documentVectors.push({ docId, vectorId: id });
+            submission.ids.push(id);
+            submission.vectors.push(chunk.vector);
+            submission.payloads.push(payload);
+          });
+
+          const additionResult = await client.upsert(namespace, {
+            wait: true,
+            batch: { ...submission },
+          });
+          if (additionResult?.status !== "completed")
+            throw new Error("Error embedding into QDrant", additionResult);
+        }
+
+        await DocumentVectors.bulkInsert(documentVectors);
+        return true;
+      }
+
+      // If we are here then we are going to embed and store a novel document.
+      // We have to do this manually as opposed to using LangChains `Qdrant.fromDocuments`
+      // because we then cannot atomically control our namespace to granularly find/remove documents
+      // from vectordb.
+      const textSplitter = new RecursiveCharacterTextSplitter({
+        chunkSize: 1000,
+        chunkOverlap: 20,
+      });
+      const textChunks = await textSplitter.splitText(pageContent);
+
+      console.log("Chunks created from document:", textChunks.length);
+      const LLMConnector = getLLMProvider();
+      const documentVectors = [];
+      const vectors = [];
+      const vectorValues = await LLMConnector.embedChunks(textChunks);
+      const submission = {
+        ids: [],
+        vectors: [],
+        payloads: [],
+      };
+
+      if (!!vectorValues && vectorValues.length > 0) {
+        for (const [i, vector] of vectorValues.entries()) {
+          const vectorRecord = {
+            id: uuidv4(),
+            vector: vector,
+            // [DO NOT REMOVE]
+            // LangChain will be unable to find your text if you embed manually and dont include the `text` key.
+            // https://github.com/hwchase17/langchainjs/blob/2def486af734c0ca87285a48f1a04c057ab74bdf/langchain/src/vectorstores/pinecone.ts#L64
+            payload: { ...metadata, text: textChunks[i] },
+          };
+
+          submission.ids.push(vectorRecord.id);
+          submission.vectors.push(vectorRecord.vector);
+          submission.payloads.push(vectorRecord.payload);
+
+          vectors.push(vectorRecord);
+          documentVectors.push({ docId, vectorId: vectorRecord.id });
+        }
+      } else {
+        console.error(
+          "Could not use OpenAI to embed document chunks! This document will not be recorded."
+        );
+      }
+
+      const { client } = await this.connect();
+      const collection = await this.getOrCreateCollection(client, namespace);
+      if (!collection)
+        throw new Error("Failed to create new QDrant collection!", {
+          namespace,
+        });
+
+      if (vectors.length > 0) {
+        const chunks = [];
+
+        console.log("Inserting vectorized chunks into QDrant collection.");
+        for (const chunk of toChunks(vectors, 500)) chunks.push(chunk);
+
+        const additionResult = await client.upsert(namespace, {
+          wait: true,
+          batch: {
+            ids: submission.ids,
+            vectors: submission.vectors,
+            payloads: submission.payloads,
+          },
+        });
+        if (additionResult?.status !== "completed")
+          throw new Error("Error embedding into QDrant", additionResult);
+
+        await storeVectorResult(chunks, fullFilePath);
+      }
+
+      await DocumentVectors.bulkInsert(documentVectors);
+      return true;
+    } catch (e) {
+      console.error("addDocumentToNamespace", e.message);
+      return false;
+    }
+  },
+  deleteDocumentFromNamespace: async function (namespace, docId) {
+    const { DocumentVectors } = require("../../../models/vectors");
+    const { client } = await this.connect();
+    if (!(await this.namespaceExists(client, namespace))) return;
+
+    const knownDocuments = await DocumentVectors.where(`docId = '${docId}'`);
+    if (knownDocuments.length === 0) return;
+
+    const vectorIds = knownDocuments.map((doc) => doc.vectorId);
+    await client.delete(namespace, {
+      wait: true,
+      points: vectorIds,
+    });
+
+    const indexes = knownDocuments.map((doc) => doc.id);
+    await DocumentVectors.deleteIds(indexes);
+    return true;
+  },
+  query: async function (reqBody = {}) {
+    const { namespace = null, input, workspace = {} } = reqBody;
+    if (!namespace || !input) throw new Error("Invalid request body");
+
+    const { client } = await this.connect();
+    if (!(await this.namespaceExists(client, namespace))) {
+      return {
+        response: null,
+        sources: [],
+        message: "Invalid query - no documents found for workspace!",
+      };
+    }
+
+    const LLMConnector = getLLMProvider();
+    const queryVector = await LLMConnector.embedTextInput(input);
+    const { contextTexts, sourceDocuments } = await this.similarityResponse(
+      client,
+      namespace,
+      queryVector
+    );
+    const prompt = {
+      role: "system",
+      content: `${chatPrompt(workspace)}
+    Context:
+    ${contextTexts
+      .map((text, i) => {
+        return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
+      })
+      .join("")}`,
+    };
+    const memory = [prompt, { role: "user", content: input }];
+    const responseText = await LLMConnector.getChatCompletion(memory, {
+      temperature: workspace?.openAiTemp ?? 0.7,
+    });
+
+    return {
+      response: responseText,
+      sources: this.curateSources(sourceDocuments),
+      message: false,
+    };
+  },
+  // This implementation of chat uses the chat history and modifies the system prompt at execution
+  // this is improved over the regular langchain implementation so that chats do not directly modify embeddings
+  // because then multi-user support will have all conversations mutating the base vector collection to which then
+  // the only solution is replicating entire vector databases per user - which will very quickly consume space on VectorDbs
+  chat: async function (reqBody = {}) {
+    const {
+      namespace = null,
+      input,
+      workspace = {},
+      chatHistory = [],
+    } = reqBody;
+    if (!namespace || !input) throw new Error("Invalid request body");
+
+    const { client } = await this.connect();
+    if (!(await this.namespaceExists(client, namespace))) {
+      return {
+        response: null,
+        sources: [],
+        message: "Invalid query - no documents found for workspace!",
+      };
+    }
+
+    const LLMConnector = getLLMProvider();
+    const queryVector = await LLMConnector.embedTextInput(input);
+    const { contextTexts, sourceDocuments } = await this.similarityResponse(
+      client,
+      namespace,
+      queryVector
+    );
+    const prompt = {
+      role: "system",
+      content: `${chatPrompt(workspace)}
+    Context:
+    ${contextTexts
+      .map((text, i) => {
+        return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
+      })
+      .join("")}`,
+    };
+    const memory = [prompt, ...chatHistory, { role: "user", content: input }];
+    const responseText = await LLMConnector.getChatCompletion(memory, {
+      temperature: workspace?.openAiTemp ?? 0.7,
+    });
+
+    return {
+      response: responseText,
+      sources: this.curateSources(sourceDocuments),
+      message: false,
+    };
+  },
+  "namespace-stats": async function (reqBody = {}) {
+    const { namespace = null } = reqBody;
+    if (!namespace) throw new Error("namespace required");
+    const { client } = await this.connect();
+    if (!(await this.namespaceExists(client, namespace)))
+      throw new Error("Namespace by that name does not exist.");
+    const stats = await this.namespace(client, namespace);
+    return stats
+      ? stats
+      : { message: "No stats were able to be fetched from DB for namespace" };
+  },
+  "delete-namespace": async function (reqBody = {}) {
+    const { namespace = null } = reqBody;
+    const { client } = await this.connect();
+    if (!(await this.namespaceExists(client, namespace)))
+      throw new Error("Namespace by that name does not exist.");
+
+    const details = await this.namespace(client, namespace);
+    await this.deleteVectorsInNamespace(client, namespace);
+    return {
+      message: `Namespace ${namespace} was deleted along with ${details?.vectorCount} vectors.`,
+    };
+  },
+  reset: async function () {
+    const { client } = await this.connect();
+    const response = await client.getCollections();
+    for (const collection of response.collections) {
+      await client.deleteCollection(collection.name);
+    }
+    return { reset: true };
+  },
+  curateSources: function (sources = []) {
+    const documents = [];
+    for (const source of sources) {
+      if (Object.keys(source).length > 0) {
+        documents.push({
+          ...source,
+        });
+      }
+    }
+
+    return documents;
+  },
+};
+
+module.exports.QDrant = QDrant;
diff --git a/server/yarn.lock b/server/yarn.lock
index 2ff2aec4b..6a9e1669e 100644
--- a/server/yarn.lock
+++ b/server/yarn.lock
@@ -173,6 +173,25 @@
   dependencies:
     cross-fetch "^3.1.5"
 
+"@qdrant/js-client-rest@^1.4.0":
+  version "1.4.0"
+  resolved "https://registry.yarnpkg.com/@qdrant/js-client-rest/-/js-client-rest-1.4.0.tgz#efd341a9a30b241e7e11f773b581b3102db1adc6"
+  integrity sha512-I3pCKnaVdqiVpZ9+XtEjCx7IQSJnerXffD/g8mj/fZsOOJH3IFM+nF2izOfVIByufAArW+drGcAPrxHedba99w==
+  dependencies:
+    "@qdrant/openapi-typescript-fetch" "^1.2.1"
+    "@sevinf/maybe" "^0.5.0"
+    undici "^5.22.1"
+
+"@qdrant/openapi-typescript-fetch@^1.2.1":
+  version "1.2.1"
+  resolved "https://registry.yarnpkg.com/@qdrant/openapi-typescript-fetch/-/openapi-typescript-fetch-1.2.1.tgz#6e232899ca0a7fbc769f0c3a229b56f93da39f19"
+  integrity sha512-oiBJRN1ME7orFZocgE25jrM3knIF/OKJfMsZPBbtMMKfgNVYfps0MokGvSJkBmecj6bf8QoLXWIGlIoaTM4Zmw==
+
+"@sevinf/maybe@^0.5.0":
+  version "0.5.0"
+  resolved "https://registry.yarnpkg.com/@sevinf/maybe/-/maybe-0.5.0.tgz#e59fcea028df615fe87d708bb30e1f338e46bb44"
+  integrity sha512-ARhyoYDnY1LES3vYI0fiG6e9esWfTNcXcO6+MPJJXcnyMV3bim4lnFt45VXouV7y82F4x3YH8nOQ6VztuvUiWg==
+
 "@tootallnate/once@1":
   version "1.1.2"
   resolved "https://registry.yarnpkg.com/@tootallnate/once/-/once-1.1.2.tgz#ccb91445360179a04e7fe6aff78c00ffc1eeaf82"
@@ -526,7 +545,7 @@ buffer@^5.5.0:
     base64-js "^1.3.1"
     ieee754 "^1.1.13"
 
-busboy@^1.0.0:
+busboy@^1.0.0, busboy@^1.6.0:
   version "1.6.0"
   resolved "https://registry.yarnpkg.com/busboy/-/busboy-1.6.0.tgz#966ea36a9502e43cdb9146962523b92f531f6893"
   integrity sha512-8SFQbg/0hQ9xy3UNTB0YEnsNBbWfhf7RtnzpL7TkBiTBRfrQ9Fxcnz7VJsleJpyp6rVLvXiuORqjlHi5q+PYuA==
@@ -2505,6 +2524,13 @@ undefsafe@^2.0.5:
   resolved "https://registry.yarnpkg.com/undefsafe/-/undefsafe-2.0.5.tgz#38733b9327bdcd226db889fb723a6efd162e6e2c"
   integrity sha512-WxONCrssBM8TSPRqN5EmsjVrsv4A8X12J4ArBiiayv3DyyG3ZlIg6yysuuSYdZsVz3TKcTg2fd//Ujd4CHV1iA==
 
+undici@^5.22.1:
+  version "5.23.0"
+  resolved "https://registry.yarnpkg.com/undici/-/undici-5.23.0.tgz#e7bdb0ed42cebe7b7aca87ced53e6eaafb8f8ca0"
+  integrity sha512-1D7w+fvRsqlQ9GscLBwcAJinqcZGHUKjbOmXdlE/v8BvEGXjeWAax+341q44EuTcHXXnfyKNbKRq4Lg7OzhMmg==
+  dependencies:
+    busboy "^1.6.0"
+
 unique-filename@^1.1.1:
   version "1.1.1"
   resolved "https://registry.yarnpkg.com/unique-filename/-/unique-filename-1.1.1.tgz#1d69769369ada0583103a1e6ae87681b56573230"