mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2025-04-23 13:08:11 +00:00
Enable num_ctx
to match defined chunk length in ollama embedder (#3129)
* Enable `num_ctx` to match defined chunk length in ollama embedder * remove console
This commit is contained in:
parent
e76baacec4
commit
df8d34d31e
1 changed files with 27 additions and 12 deletions
|
@ -1,4 +1,5 @@
|
||||||
const { maximumChunkLength } = require("../../helpers");
|
const { maximumChunkLength } = require("../../helpers");
|
||||||
|
const { Ollama } = require("ollama");
|
||||||
|
|
||||||
class OllamaEmbedder {
|
class OllamaEmbedder {
|
||||||
constructor() {
|
constructor() {
|
||||||
|
@ -7,21 +8,27 @@ class OllamaEmbedder {
|
||||||
if (!process.env.EMBEDDING_MODEL_PREF)
|
if (!process.env.EMBEDDING_MODEL_PREF)
|
||||||
throw new Error("No embedding model was set.");
|
throw new Error("No embedding model was set.");
|
||||||
|
|
||||||
this.basePath = `${process.env.EMBEDDING_BASE_PATH}/api/embeddings`;
|
this.basePath = process.env.EMBEDDING_BASE_PATH;
|
||||||
this.model = process.env.EMBEDDING_MODEL_PREF;
|
this.model = process.env.EMBEDDING_MODEL_PREF;
|
||||||
// Limit of how many strings we can process in a single pass to stay with resource or network limits
|
// Limit of how many strings we can process in a single pass to stay with resource or network limits
|
||||||
this.maxConcurrentChunks = 1;
|
this.maxConcurrentChunks = 1;
|
||||||
this.embeddingMaxChunkLength = maximumChunkLength();
|
this.embeddingMaxChunkLength = maximumChunkLength();
|
||||||
|
this.client = new Ollama({ host: this.basePath });
|
||||||
|
this.log(
|
||||||
|
`initialized with model ${this.model} at ${this.basePath}. num_ctx: ${this.embeddingMaxChunkLength}`
|
||||||
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
log(text, ...args) {
|
log(text, ...args) {
|
||||||
console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args);
|
console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Checks if the Ollama service is alive by pinging the base path.
|
||||||
|
* @returns {Promise<boolean>} - A promise that resolves to true if the service is alive, false otherwise.
|
||||||
|
*/
|
||||||
async #isAlive() {
|
async #isAlive() {
|
||||||
return await fetch(process.env.EMBEDDING_BASE_PATH, {
|
return await fetch(this.basePath)
|
||||||
method: "HEAD",
|
|
||||||
})
|
|
||||||
.then((res) => res.ok)
|
.then((res) => res.ok)
|
||||||
.catch((e) => {
|
.catch((e) => {
|
||||||
this.log(e.message);
|
this.log(e.message);
|
||||||
|
@ -40,6 +47,13 @@ class OllamaEmbedder {
|
||||||
* This function takes an array of text chunks and embeds them using the Ollama API.
|
* This function takes an array of text chunks and embeds them using the Ollama API.
|
||||||
* chunks are processed sequentially to avoid overwhelming the API with too many requests
|
* chunks are processed sequentially to avoid overwhelming the API with too many requests
|
||||||
* or running out of resources on the endpoint running the ollama instance.
|
* or running out of resources on the endpoint running the ollama instance.
|
||||||
|
*
|
||||||
|
* We will use the num_ctx option to set the maximum context window to the max chunk length defined by the user in the settings
|
||||||
|
* so that the maximum context window is used and content is not truncated.
|
||||||
|
*
|
||||||
|
* We also assume the default keep alive option. This could cause issues with models being unloaded and reloaded
|
||||||
|
* on load memory machines, but that is simply a user-end issue we cannot control. If the LLM and embedder are
|
||||||
|
* constantly being loaded and unloaded, the user should use another LLM or Embedder to avoid this issue.
|
||||||
* @param {string[]} textChunks - An array of text chunks to embed.
|
* @param {string[]} textChunks - An array of text chunks to embed.
|
||||||
* @returns {Promise<Array<number[]>>} - A promise that resolves to an array of embeddings.
|
* @returns {Promise<Array<number[]>>} - A promise that resolves to an array of embeddings.
|
||||||
*/
|
*/
|
||||||
|
@ -48,7 +62,6 @@ class OllamaEmbedder {
|
||||||
throw new Error(
|
throw new Error(
|
||||||
`Ollama service could not be reached. Is Ollama running?`
|
`Ollama service could not be reached. Is Ollama running?`
|
||||||
);
|
);
|
||||||
|
|
||||||
this.log(
|
this.log(
|
||||||
`Embedding ${textChunks.length} chunks of text with ${this.model}.`
|
`Embedding ${textChunks.length} chunks of text with ${this.model}.`
|
||||||
);
|
);
|
||||||
|
@ -58,15 +71,17 @@ class OllamaEmbedder {
|
||||||
|
|
||||||
for (const chunk of textChunks) {
|
for (const chunk of textChunks) {
|
||||||
try {
|
try {
|
||||||
const res = await fetch(this.basePath, {
|
const res = await this.client.embeddings({
|
||||||
method: "POST",
|
model: this.model,
|
||||||
body: JSON.stringify({
|
prompt: chunk,
|
||||||
model: this.model,
|
options: {
|
||||||
prompt: chunk,
|
// Always set the num_ctx to the max chunk length defined by the user in the settings
|
||||||
}),
|
// so that the maximum context window is used and content is not truncated.
|
||||||
|
num_ctx: this.embeddingMaxChunkLength,
|
||||||
|
},
|
||||||
});
|
});
|
||||||
|
|
||||||
const { embedding } = await res.json();
|
const { embedding } = res;
|
||||||
if (!Array.isArray(embedding) || embedding.length === 0)
|
if (!Array.isArray(embedding) || embedding.length === 0)
|
||||||
throw new Error("Ollama returned an empty embedding for chunk!");
|
throw new Error("Ollama returned an empty embedding for chunk!");
|
||||||
|
|
||||||
|
|
Loading…
Add table
Reference in a new issue