mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2025-04-24 05:28:11 +00:00
Enable num_ctx
to match defined chunk length in ollama embedder (#3129)
* Enable `num_ctx` to match defined chunk length in ollama embedder * remove console
This commit is contained in:
parent
e76baacec4
commit
df8d34d31e
1 changed files with 27 additions and 12 deletions
|
@ -1,4 +1,5 @@
|
|||
const { maximumChunkLength } = require("../../helpers");
|
||||
const { Ollama } = require("ollama");
|
||||
|
||||
class OllamaEmbedder {
|
||||
constructor() {
|
||||
|
@ -7,21 +8,27 @@ class OllamaEmbedder {
|
|||
if (!process.env.EMBEDDING_MODEL_PREF)
|
||||
throw new Error("No embedding model was set.");
|
||||
|
||||
this.basePath = `${process.env.EMBEDDING_BASE_PATH}/api/embeddings`;
|
||||
this.basePath = process.env.EMBEDDING_BASE_PATH;
|
||||
this.model = process.env.EMBEDDING_MODEL_PREF;
|
||||
// Limit of how many strings we can process in a single pass to stay with resource or network limits
|
||||
this.maxConcurrentChunks = 1;
|
||||
this.embeddingMaxChunkLength = maximumChunkLength();
|
||||
this.client = new Ollama({ host: this.basePath });
|
||||
this.log(
|
||||
`initialized with model ${this.model} at ${this.basePath}. num_ctx: ${this.embeddingMaxChunkLength}`
|
||||
);
|
||||
}
|
||||
|
||||
log(text, ...args) {
|
||||
console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args);
|
||||
}
|
||||
|
||||
/**
|
||||
* Checks if the Ollama service is alive by pinging the base path.
|
||||
* @returns {Promise<boolean>} - A promise that resolves to true if the service is alive, false otherwise.
|
||||
*/
|
||||
async #isAlive() {
|
||||
return await fetch(process.env.EMBEDDING_BASE_PATH, {
|
||||
method: "HEAD",
|
||||
})
|
||||
return await fetch(this.basePath)
|
||||
.then((res) => res.ok)
|
||||
.catch((e) => {
|
||||
this.log(e.message);
|
||||
|
@ -40,6 +47,13 @@ class OllamaEmbedder {
|
|||
* This function takes an array of text chunks and embeds them using the Ollama API.
|
||||
* chunks are processed sequentially to avoid overwhelming the API with too many requests
|
||||
* or running out of resources on the endpoint running the ollama instance.
|
||||
*
|
||||
* We will use the num_ctx option to set the maximum context window to the max chunk length defined by the user in the settings
|
||||
* so that the maximum context window is used and content is not truncated.
|
||||
*
|
||||
* We also assume the default keep alive option. This could cause issues with models being unloaded and reloaded
|
||||
* on load memory machines, but that is simply a user-end issue we cannot control. If the LLM and embedder are
|
||||
* constantly being loaded and unloaded, the user should use another LLM or Embedder to avoid this issue.
|
||||
* @param {string[]} textChunks - An array of text chunks to embed.
|
||||
* @returns {Promise<Array<number[]>>} - A promise that resolves to an array of embeddings.
|
||||
*/
|
||||
|
@ -48,7 +62,6 @@ class OllamaEmbedder {
|
|||
throw new Error(
|
||||
`Ollama service could not be reached. Is Ollama running?`
|
||||
);
|
||||
|
||||
this.log(
|
||||
`Embedding ${textChunks.length} chunks of text with ${this.model}.`
|
||||
);
|
||||
|
@ -58,15 +71,17 @@ class OllamaEmbedder {
|
|||
|
||||
for (const chunk of textChunks) {
|
||||
try {
|
||||
const res = await fetch(this.basePath, {
|
||||
method: "POST",
|
||||
body: JSON.stringify({
|
||||
const res = await this.client.embeddings({
|
||||
model: this.model,
|
||||
prompt: chunk,
|
||||
}),
|
||||
options: {
|
||||
// Always set the num_ctx to the max chunk length defined by the user in the settings
|
||||
// so that the maximum context window is used and content is not truncated.
|
||||
num_ctx: this.embeddingMaxChunkLength,
|
||||
},
|
||||
});
|
||||
|
||||
const { embedding } = await res.json();
|
||||
const { embedding } = res;
|
||||
if (!Array.isArray(embedding) || embedding.length === 0)
|
||||
throw new Error("Ollama returned an empty embedding for chunk!");
|
||||
|
||||
|
|
Loading…
Add table
Reference in a new issue