update README

This commit is contained in:
timothycarambat 2024-05-14 13:11:31 -07:00
parent b5ac944475
commit e9e4ffb838

View file

@ -67,9 +67,9 @@ Some cool features of AnythingLLM
- Extremely efficient cost-saving measures for managing very large documents. You'll never pay to embed a massive document or transcript more than once. 90% more cost effective than other document chatbot solutions.
- Full Developer API for custom integrations!
### Supported LLMs, Embedders, Transcriptions models, and Vector Databases
### Supported LLMs, Embedder Models, Speech models, and Vector Databases
**Supported LLMs:**
**Language Learning Models:**
- [Any open-source llama.cpp compatible model](/server/storage/models/README.md#text-generation-llm-selection)
- [OpenAI](https://openai.com)
@ -90,7 +90,7 @@ Some cool features of AnythingLLM
- [KoboldCPP](https://github.com/LostRuins/koboldcpp)
- [Text Generation Web UI](https://github.com/oobabooga/text-generation-webui)
**Supported Embedding models:**
**Embedder models:**
- [AnythingLLM Native Embedder](/server/storage/models/README.md) (default)
- [OpenAI](https://openai.com)
@ -100,12 +100,22 @@ Some cool features of AnythingLLM
- [LM Studio (all)](https://lmstudio.ai)
- [Cohere](https://cohere.com/)
**Supported Transcription models:**
**Audio Transcription models:**
- [AnythingLLM Built-in](https://github.com/Mintplex-Labs/anything-llm/tree/master/server/storage/models#audiovideo-transcription) (default)
- [OpenAI](https://openai.com/)
**Supported Vector Databases:**
**TTS (text-to-speech) support:**
- Native Browser Built-in (default)
- [OpenAI TTS](https://platform.openai.com/docs/guides/text-to-speech/voice-options)
- [ElevenLabs](https://elevenlabs.io/)
**STT (speech-to-text) support:**
- Native Browser Built-in (default)
**Vector Databases:**
- [LanceDB](https://github.com/lancedb/lancedb) (default)
- [Astra DB](https://www.datastax.com/products/datastax-astra)
@ -122,8 +132,9 @@ This monorepo consists of three main sections:
- `frontend`: A viteJS + React frontend that you can run to easily create and manage all your content the LLM can use.
- `server`: A NodeJS express server to handle all the interactions and do all the vectorDB management and LLM interactions.
- `docker`: Docker instructions and build process + information for building from source.
- `collector`: NodeJS express server that process and parses documents from the UI.
- `docker`: Docker instructions and build process + information for building from source.
- `embed`: Code specifically for generation of the [embed widget](./embed/README.md).
## 🛳 Self Hosting