const { NativeEmbedder } = require("../../EmbeddingEngines/native"); const { LLMPerformanceMonitor, } = require("../../helpers/chat/LLMPerformanceMonitor"); const { writeResponseChunk, clientAbortedHandler, formatChatHistory, } = require("../../helpers/chat/responses"); class AzureOpenAiLLM { constructor(embedder = null, modelPreference = null) { const { OpenAIClient, AzureKeyCredential } = require("@azure/openai"); if (!process.env.AZURE_OPENAI_ENDPOINT) throw new Error("No Azure API endpoint was set."); if (!process.env.AZURE_OPENAI_KEY) throw new Error("No Azure API key was set."); this.apiVersion = "2024-12-01-preview"; this.openai = new OpenAIClient( process.env.AZURE_OPENAI_ENDPOINT, new AzureKeyCredential(process.env.AZURE_OPENAI_KEY), { apiVersion: this.apiVersion, } ); this.model = modelPreference ?? process.env.OPEN_MODEL_PREF; this.limits = { history: this.promptWindowLimit() * 0.15, system: this.promptWindowLimit() * 0.15, user: this.promptWindowLimit() * 0.7, }; this.embedder = embedder ?? new NativeEmbedder(); this.defaultTemp = 0.7; this.#log( `Initialized. Model "${this.model}" @ ${this.promptWindowLimit()} tokens. API-Version: ${this.apiVersion}` ); } #log(text, ...args) { console.log(`\x1b[32m[AzureOpenAi]\x1b[0m ${text}`, ...args); } #appendContext(contextTexts = []) { if (!contextTexts || !contextTexts.length) return ""; return ( "\nContext:\n" + contextTexts .map((text, i) => { return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`; }) .join("") ); } streamingEnabled() { return "streamGetChatCompletion" in this; } static promptWindowLimit(_modelName) { return !!process.env.AZURE_OPENAI_TOKEN_LIMIT ? Number(process.env.AZURE_OPENAI_TOKEN_LIMIT) : 4096; } // Sure the user selected a proper value for the token limit // could be any of these https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#gpt-4-models // and if undefined - assume it is the lowest end. promptWindowLimit() { return !!process.env.AZURE_OPENAI_TOKEN_LIMIT ? Number(process.env.AZURE_OPENAI_TOKEN_LIMIT) : 4096; } isValidChatCompletionModel(_modelName = "") { // The Azure user names their "models" as deployments and they can be any name // so we rely on the user to put in the correct deployment as only they would // know it. return true; } /** * Generates appropriate content array for a message + attachments. * @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}} * @returns {string|object[]} */ #generateContent({ userPrompt, attachments = [] }) { if (!attachments.length) { return userPrompt; } const content = [{ type: "text", text: userPrompt }]; for (let attachment of attachments) { content.push({ type: "image_url", imageUrl: { url: attachment.contentString, }, }); } return content.flat(); } constructPrompt({ systemPrompt = "", contextTexts = [], chatHistory = [], userPrompt = "", attachments = [], // This is the specific attachment for only this prompt }) { const prompt = { role: "system", content: `${systemPrompt}${this.#appendContext(contextTexts)}`, }; return [ prompt, ...formatChatHistory(chatHistory, this.#generateContent), { role: "user", content: this.#generateContent({ userPrompt, attachments }), }, ]; } async getChatCompletion(messages = [], { temperature = 0.7 }) { if (!this.model) throw new Error( "No OPEN_MODEL_PREF ENV defined. This must the name of a deployment on your Azure account for an LLM chat model like GPT-3.5." ); const result = await LLMPerformanceMonitor.measureAsyncFunction( this.openai.getChatCompletions(this.model, messages, { temperature, }) ); if ( !result.output.hasOwnProperty("choices") || result.output.choices.length === 0 ) return null; return { textResponse: result.output.choices[0].message.content, metrics: { prompt_tokens: result.output.usage.promptTokens || 0, completion_tokens: result.output.usage.completionTokens || 0, total_tokens: result.output.usage.totalTokens || 0, outputTps: result.output.usage.completionTokens / result.duration, duration: result.duration, }, }; } async streamGetChatCompletion(messages = [], { temperature = 0.7 }) { if (!this.model) throw new Error( "No OPEN_MODEL_PREF ENV defined. This must the name of a deployment on your Azure account for an LLM chat model like GPT-3.5." ); const measuredStreamRequest = await LLMPerformanceMonitor.measureStream( await this.openai.streamChatCompletions(this.model, messages, { temperature, n: 1, }), messages ); return measuredStreamRequest; } /** * Handles the stream response from the AzureOpenAI API. * Azure does not return the usage metrics in the stream response, but 1msg = 1token * so we can estimate the completion tokens by counting the number of messages. * @param {Object} response - the response object * @param {import('../../helpers/chat/LLMPerformanceMonitor').MonitoredStream} stream - the stream response from the AzureOpenAI API w/tracking * @param {Object} responseProps - the response properties * @returns {Promise<string>} */ handleStream(response, stream, responseProps) { const { uuid = uuidv4(), sources = [] } = responseProps; return new Promise(async (resolve) => { let fullText = ""; let usage = { completion_tokens: 0, }; // Establish listener to early-abort a streaming response // in case things go sideways or the user does not like the response. // We preserve the generated text but continue as if chat was completed // to preserve previously generated content. const handleAbort = () => { stream?.endMeasurement(usage); clientAbortedHandler(resolve, fullText); }; response.on("close", handleAbort); for await (const event of stream) { for (const choice of event.choices) { const delta = choice.delta?.content; if (!delta) continue; fullText += delta; usage.completion_tokens++; writeResponseChunk(response, { uuid, sources: [], type: "textResponseChunk", textResponse: delta, close: false, error: false, }); } } writeResponseChunk(response, { uuid, sources, type: "textResponseChunk", textResponse: "", close: true, error: false, }); response.removeListener("close", handleAbort); stream?.endMeasurement(usage); resolve(fullText); }); } // Simple wrapper for dynamic embedder & normalize interface for all LLM implementations async embedTextInput(textInput) { return await this.embedder.embedTextInput(textInput); } async embedChunks(textChunks = []) { return await this.embedder.embedChunks(textChunks); } async compressMessages(promptArgs = {}, rawHistory = []) { const { messageArrayCompressor } = require("../../helpers/chat"); const messageArray = this.constructPrompt(promptArgs); return await messageArrayCompressor(this, messageArray, rawHistory); } } module.exports = { AzureOpenAiLLM, };