const fs = require("fs"); const path = require("path"); const { NativeEmbedder } = require("../../EmbeddingEngines/native"); const { LLMPerformanceMonitor, } = require("../../helpers/chat/LLMPerformanceMonitor"); const { writeResponseChunk, clientAbortedHandler, formatChatHistory, } = require("../../helpers/chat/responses"); const { MODEL_MAP } = require("../modelMap"); const { defaultGeminiModels, v1BetaModels } = require("./defaultModels"); const { safeJsonParse } = require("../../http"); const cacheFolder = path.resolve( process.env.STORAGE_DIR ? path.resolve(process.env.STORAGE_DIR, "models", "gemini") : path.resolve(__dirname, `../../../storage/models/gemini`) ); class GeminiLLM { constructor(embedder = null, modelPreference = null) { if (!process.env.GEMINI_API_KEY) throw new Error("No Gemini API key was set."); // Docs: https://ai.google.dev/tutorials/node_quickstart const { GoogleGenerativeAI } = require("@google/generative-ai"); const genAI = new GoogleGenerativeAI(process.env.GEMINI_API_KEY); this.model = modelPreference || process.env.GEMINI_LLM_MODEL_PREF || "gemini-pro"; this.gemini = genAI.getGenerativeModel( { model: this.model }, { apiVersion: /** * There are some models that are only available in the v1beta API * and some models that are only available in the v1 API * generally, v1beta models have `exp` in the name, but not always * so we check for both against a static list as well. * @see {v1BetaModels} */ this.model.includes("exp") || v1BetaModels.includes(this.model) ? "v1beta" : "v1", } ); this.limits = { history: this.promptWindowLimit() * 0.15, system: this.promptWindowLimit() * 0.15, user: this.promptWindowLimit() * 0.7, }; this.embedder = embedder ?? new NativeEmbedder(); this.defaultTemp = 0.7; // not used for Gemini this.safetyThreshold = this.#fetchSafetyThreshold(); if (!fs.existsSync(cacheFolder)) fs.mkdirSync(cacheFolder, { recursive: true }); this.cacheModelPath = path.resolve(cacheFolder, "models.json"); this.cacheAtPath = path.resolve(cacheFolder, ".cached_at"); this.#log( `Initialized with model: ${this.model} (${this.promptWindowLimit()})` ); } #log(text, ...args) { console.log(`\x1b[32m[GeminiLLM]\x1b[0m ${text}`, ...args); } // This checks if the .cached_at file has a timestamp that is more than 1Week (in millis) // from the current date. If it is, then we will refetch the API so that all the models are up // to date. static cacheIsStale() { const MAX_STALE = 6.048e8; // 1 Week in MS if (!fs.existsSync(path.resolve(cacheFolder, ".cached_at"))) return true; const now = Number(new Date()); const timestampMs = Number( fs.readFileSync(path.resolve(cacheFolder, ".cached_at")) ); return now - timestampMs > MAX_STALE; } #appendContext(contextTexts = []) { if (!contextTexts || !contextTexts.length) return ""; return ( "\nContext:\n" + contextTexts .map((text, i) => { return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`; }) .join("") ); } // BLOCK_NONE can be a special candidate for some fields // https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/configure-safety-attributes#how_to_remove_automated_response_blocking_for_select_safety_attributes // so if you are wondering why BLOCK_NONE still failed, the link above will explain why. #fetchSafetyThreshold() { const threshold = process.env.GEMINI_SAFETY_SETTING ?? "BLOCK_MEDIUM_AND_ABOVE"; const safetyThresholds = [ "BLOCK_NONE", "BLOCK_ONLY_HIGH", "BLOCK_MEDIUM_AND_ABOVE", "BLOCK_LOW_AND_ABOVE", ]; return safetyThresholds.includes(threshold) ? threshold : "BLOCK_MEDIUM_AND_ABOVE"; } #safetySettings() { return [ { category: "HARM_CATEGORY_HATE_SPEECH", threshold: this.safetyThreshold, }, { category: "HARM_CATEGORY_SEXUALLY_EXPLICIT", threshold: this.safetyThreshold, }, { category: "HARM_CATEGORY_HARASSMENT", threshold: this.safetyThreshold }, { category: "HARM_CATEGORY_DANGEROUS_CONTENT", threshold: this.safetyThreshold, }, ]; } streamingEnabled() { return "streamGetChatCompletion" in this; } static promptWindowLimit(modelName) { try { const cacheModelPath = path.resolve(cacheFolder, "models.json"); if (!fs.existsSync(cacheModelPath)) return MODEL_MAP.gemini[modelName] ?? 30_720; const models = safeJsonParse(fs.readFileSync(cacheModelPath)); const model = models.find((model) => model.id === modelName); if (!model) throw new Error( "Model not found in cache - falling back to default model." ); return model.contextWindow; } catch (e) { console.error(`GeminiLLM:promptWindowLimit`, e.message); return MODEL_MAP.gemini[modelName] ?? 30_720; } } promptWindowLimit() { try { if (!fs.existsSync(this.cacheModelPath)) return MODEL_MAP.gemini[this.model] ?? 30_720; const models = safeJsonParse(fs.readFileSync(this.cacheModelPath)); const model = models.find((model) => model.id === this.model); if (!model) throw new Error( "Model not found in cache - falling back to default model." ); return model.contextWindow; } catch (e) { console.error(`GeminiLLM:promptWindowLimit`, e.message); return MODEL_MAP.gemini[this.model] ?? 30_720; } } /** * Fetches Gemini models from the Google Generative AI API * @param {string} apiKey - The API key to use for the request * @param {number} limit - The maximum number of models to fetch * @param {string} pageToken - The page token to use for pagination * @returns {Promise<[{id: string, name: string, contextWindow: number, experimental: boolean}]>} A promise that resolves to an array of Gemini models */ static async fetchModels(apiKey, limit = 1_000, pageToken = null) { if (!apiKey) return []; if (fs.existsSync(cacheFolder) && !this.cacheIsStale()) { console.log( `\x1b[32m[GeminiLLM]\x1b[0m Using cached models API response.` ); return safeJsonParse( fs.readFileSync(path.resolve(cacheFolder, "models.json")) ); } const url = new URL( "https://generativelanguage.googleapis.com/v1beta/models" ); url.searchParams.set("pageSize", limit); url.searchParams.set("key", apiKey); if (pageToken) url.searchParams.set("pageToken", pageToken); let success = false; const models = await fetch(url.toString(), { method: "GET", headers: { "Content-Type": "application/json" }, }) .then((res) => res.json()) .then((data) => { if (data.error) throw new Error(data.error.message); return data.models ?? []; }) .then((models) => { success = true; return models .filter( (model) => !model.displayName.toLowerCase().includes("tuning") ) .filter((model) => model.supportedGenerationMethods.includes("generateContent") ) // Only generateContent is supported .map((model) => { return { id: model.name.split("/").pop(), name: model.displayName, contextWindow: model.inputTokenLimit, experimental: model.name.includes("exp"), }; }); }) .catch((e) => { console.error(`Gemini:getGeminiModels`, e.message); success = false; return defaultGeminiModels; }); if (success) { console.log( `\x1b[32m[GeminiLLM]\x1b[0m Writing cached models API response to disk.` ); if (!fs.existsSync(cacheFolder)) fs.mkdirSync(cacheFolder, { recursive: true }); fs.writeFileSync( path.resolve(cacheFolder, "models.json"), JSON.stringify(models) ); fs.writeFileSync( path.resolve(cacheFolder, ".cached_at"), new Date().getTime().toString() ); } return models; } /** * Checks if a model is valid for chat completion (unused) * @deprecated * @param {string} modelName - The name of the model to check * @returns {Promise<boolean>} A promise that resolves to a boolean indicating if the model is valid */ async isValidChatCompletionModel(modelName = "") { const models = await this.fetchModels(process.env.GEMINI_API_KEY); return models.some((model) => model.id === modelName); } /** * Generates appropriate content array for a message + attachments. * @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}} * @returns {string|object[]} */ #generateContent({ userPrompt, attachments = [] }) { if (!attachments.length) { return userPrompt; } const content = [{ text: userPrompt }]; for (let attachment of attachments) { content.push({ inlineData: { data: attachment.contentString.split("base64,")[1], mimeType: attachment.mime, }, }); } return content.flat(); } constructPrompt({ systemPrompt = "", contextTexts = [], chatHistory = [], userPrompt = "", attachments = [], }) { const prompt = { role: "system", content: `${systemPrompt}${this.#appendContext(contextTexts)}`, }; return [ prompt, { role: "assistant", content: "Okay." }, ...formatChatHistory(chatHistory, this.#generateContent), { role: "USER_PROMPT", content: this.#generateContent({ userPrompt, attachments }), }, ]; } // This will take an OpenAi format message array and only pluck valid roles from it. formatMessages(messages = []) { // Gemini roles are either user || model. // and all "content" is relabeled to "parts" const allMessages = messages .map((message) => { if (message.role === "system") return { role: "user", parts: [{ text: message.content }] }; if (message.role === "user") { // If the content is an array - then we have already formatted the context so return it directly. if (Array.isArray(message.content)) return { role: "user", parts: message.content }; // Otherwise, this was a regular user message with no attachments // so we need to format it for Gemini return { role: "user", parts: [{ text: message.content }] }; } if (message.role === "assistant") return { role: "model", parts: [{ text: message.content }] }; return null; }) .filter((msg) => !!msg); // Specifically, Google cannot have the last sent message be from a user with no assistant reply // otherwise it will crash. So if the last item is from the user, it was not completed so pop it off // the history. if ( allMessages.length > 0 && allMessages[allMessages.length - 1].role === "user" ) allMessages.pop(); // Validate that after every user message, there is a model message // sometimes when using gemini we try to compress messages in order to retain as // much context as possible but this may mess up the order of the messages that the gemini model expects // we do this check to work around the edge case where 2 user prompts may be next to each other, in the message array for (let i = 0; i < allMessages.length; i++) { if ( allMessages[i].role === "user" && i < allMessages.length - 1 && allMessages[i + 1].role !== "model" ) { allMessages.splice(i + 1, 0, { role: "model", parts: [{ text: "Okay." }], }); } } return allMessages; } async getChatCompletion(messages = [], _opts = {}) { const prompt = messages.find( (chat) => chat.role === "USER_PROMPT" )?.content; const chatThread = this.gemini.startChat({ history: this.formatMessages(messages), safetySettings: this.#safetySettings(), }); const { output: result, duration } = await LLMPerformanceMonitor.measureAsyncFunction( chatThread.sendMessage(prompt) ); const responseText = result.response.text(); if (!responseText) throw new Error("Gemini: No response could be parsed."); const promptTokens = LLMPerformanceMonitor.countTokens(messages); const completionTokens = LLMPerformanceMonitor.countTokens([ { content: responseText }, ]); return { textResponse: responseText, metrics: { prompt_tokens: promptTokens, completion_tokens: completionTokens, total_tokens: promptTokens + completionTokens, outputTps: (promptTokens + completionTokens) / duration, duration, }, }; } async streamGetChatCompletion(messages = [], _opts = {}) { const prompt = messages.find( (chat) => chat.role === "USER_PROMPT" )?.content; const chatThread = this.gemini.startChat({ history: this.formatMessages(messages), safetySettings: this.#safetySettings(), }); const responseStream = await LLMPerformanceMonitor.measureStream( (await chatThread.sendMessageStream(prompt)).stream, messages ); if (!responseStream) throw new Error("Could not stream response stream from Gemini."); return responseStream; } async compressMessages(promptArgs = {}, rawHistory = []) { const { messageArrayCompressor } = require("../../helpers/chat"); const messageArray = this.constructPrompt(promptArgs); return await messageArrayCompressor(this, messageArray, rawHistory); } handleStream(response, stream, responseProps) { const { uuid = uuidv4(), sources = [] } = responseProps; // Usage is not available for Gemini streams // so we need to calculate the completion tokens manually // because 1 chunk != 1 token in gemini responses and it buffers // many tokens before sending them to the client as a "chunk" return new Promise(async (resolve) => { let fullText = ""; // Establish listener to early-abort a streaming response // in case things go sideways or the user does not like the response. // We preserve the generated text but continue as if chat was completed // to preserve previously generated content. const handleAbort = () => { stream?.endMeasurement({ completion_tokens: LLMPerformanceMonitor.countTokens([ { content: fullText }, ]), }); clientAbortedHandler(resolve, fullText); }; response.on("close", handleAbort); for await (const chunk of stream) { let chunkText; try { // Due to content sensitivity we cannot always get the function .text(); // https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/configure-safety-attributes#gemini-TASK-samples-nodejs // and it is not possible to unblock or disable this safety protocol without being allowlisted by Google. chunkText = chunk.text(); } catch (e) { chunkText = e.message; writeResponseChunk(response, { uuid, sources: [], type: "abort", textResponse: null, close: true, error: e.message, }); stream?.endMeasurement({ completion_tokens: 0 }); resolve(e.message); return; } fullText += chunkText; writeResponseChunk(response, { uuid, sources: [], type: "textResponseChunk", textResponse: chunk.text(), close: false, error: false, }); } writeResponseChunk(response, { uuid, sources, type: "textResponseChunk", textResponse: "", close: true, error: false, }); response.removeListener("close", handleAbort); stream?.endMeasurement({ completion_tokens: LLMPerformanceMonitor.countTokens([ { content: fullText }, ]), }); resolve(fullText); }); } // Simple wrapper for dynamic embedder & normalize interface for all LLM implementations async embedTextInput(textInput) { return await this.embedder.embedTextInput(textInput); } async embedChunks(textChunks = []) { return await this.embedder.embedChunks(textChunks); } } module.exports = { GeminiLLM, };