const fs = require("fs");
const os = require("os");
const path = require("path");
const NodeCanvasFactory = require("./CanvasFactory");

class OCRLoader {
  constructor() {
    this.cacheDir = path.resolve(
      process.env.STORAGE_DIR
        ? path.resolve(process.env.STORAGE_DIR, `models`, `tesseract`)
        : path.resolve(__dirname, `../../../server/storage/models/tesseract`)
    );
  }

  log(text, ...args) {
    console.log(`\x1b[36m[OCRLoader]\x1b[0m ${text}`, ...args);
  }

  /**
   * Loads a PDF file and returns an array of documents.
   * This function is reserved to parsing for SCANNED documents - digital documents are not supported in this function
   * @returns {Promise<{pageContent: string, metadata: object}[]>} An array of documents with page content and metadata.
   */
  async ocrPDF(
    filePath,
    { maxExecutionTime = 300_000, batchSize = 10, maxWorkers = null } = {}
  ) {
    if (
      !filePath ||
      !fs.existsSync(filePath) ||
      !fs.statSync(filePath).isFile()
    ) {
      this.log(`File ${filePath} does not exist. Skipping OCR.`);
      return [];
    }

    const documentTitle = path.basename(filePath);
    this.log(`Starting OCR of ${documentTitle}`);
    const pdfjs = await import("pdf-parse/lib/pdf.js/v2.0.550/build/pdf.js");
    let buffer = fs.readFileSync(filePath);
    const canvasFactory = new NodeCanvasFactory();
    await canvasFactory.init();
    global.Image = canvasFactory.Image;

    const pdfDocument = await pdfjs.getDocument({
      data: new Uint8Array(buffer),
      canvasFactory,
    }).promise;
    buffer = null;

    const documents = [];
    const meta = await pdfDocument.getMetadata().catch(() => null);
    const metadata = {
      source: filePath,
      pdf: {
        version: "v2.0.550",
        info: meta?.info,
        metadata: meta?.metadata,
        totalPages: pdfDocument.numPages,
      },
    };

    async function getPageAsBuffer(pageNumber, scale = 1) {
      let canvas = null;
      let context = null;
      try {
        const page = await pdfDocument.getPage(pageNumber);
        const viewport = page.getViewport(scale);
        ({ canvas, context } = canvasFactory.create(
          viewport.width,
          viewport.height
        ));
        await page.render({
          canvasFactory,
          canvasContext: context,
          viewport,
        }).promise;
        return canvas.toBuffer();
      } catch (e) {
        this.log(`Error getting page as buffer: ${e.message}`);
        return null;
      } finally {
        canvas = null;
        context = null;
      }
    }

    const { createWorker, OEM } = require("tesseract.js");
    const BATCH_SIZE = batchSize;
    const MAX_EXECUTION_TIME = maxExecutionTime;
    const NUM_WORKERS = maxWorkers ?? Math.min(os.cpus().length, 4);
    const totalPages = pdfDocument.numPages;
    const workerPool = await Promise.all(
      Array(NUM_WORKERS)
        .fill(0)
        .map(() =>
          createWorker("eng", OEM.LSTM_ONLY, {
            cachePath: this.cacheDir,
          })
        )
    );

    const startTime = Date.now();
    try {
      this.log("Bootstrapping OCR completed successfully!", {
        MAX_EXECUTION_TIME_MS: MAX_EXECUTION_TIME,
        BATCH_SIZE,
        MAX_CONCURRENT_WORKERS: NUM_WORKERS,
        TOTAL_PAGES: totalPages,
      });
      const timeoutPromise = new Promise((_, reject) => {
        setTimeout(() => {
          reject(
            new Error(
              `OCR job took too long to complete (${
                MAX_EXECUTION_TIME / 1000
              } seconds)`
            )
          );
        }, MAX_EXECUTION_TIME);
      });

      const processPages = async () => {
        for (
          let startPage = 1;
          startPage <= totalPages;
          startPage += BATCH_SIZE
        ) {
          const endPage = Math.min(startPage + BATCH_SIZE - 1, totalPages);
          const pageNumbers = Array.from(
            { length: endPage - startPage + 1 },
            (_, i) => startPage + i
          );
          this.log(`Working on pages ${startPage} - ${endPage}`);

          const pageQueue = [...pageNumbers];
          const results = [];
          const workerPromises = workerPool.map(async (worker, workerIndex) => {
            while (pageQueue.length > 0) {
              const pageNum = pageQueue.shift();
              this.log(
                `\x1b[34m[Worker ${
                  workerIndex + 1
                }]\x1b[0m assigned pg${pageNum}`
              );
              const imageBuffer = await getPageAsBuffer(pageNum, 5);
              const { data } = await worker.recognize(imageBuffer, {}, "text");
              this.log(
                `✅ \x1b[34m[Worker ${
                  workerIndex + 1
                }]\x1b[0m completed pg${pageNum}`
              );
              results.push({
                pageContent: data.text,
                metadata: {
                  ...metadata,
                  loc: { pageNumber: pageNum },
                },
              });
            }
          });

          await Promise.all(workerPromises);
          documents.push(
            ...results.sort(
              (a, b) => a.metadata.loc.pageNumber - b.metadata.loc.pageNumber
            )
          );
        }
        return documents;
      };

      await Promise.race([timeoutPromise, processPages()]);
    } catch (e) {
      this.log(`Error: ${e.message}`);
    } finally {
      global.Image = undefined;
      await Promise.all(workerPool.map((worker) => worker.terminate()));
    }

    this.log(`Completed OCR of ${documentTitle}!`, {
      documentsParsed: documents.length,
      totalPages: totalPages,
      executionTime: `${((Date.now() - startTime) / 1000).toFixed(2)}s`,
    });
    return documents;
  }
}

module.exports = OCRLoader;