const { NativeEmbedder } = require("../../EmbeddingEngines/native"); const { LLMPerformanceMonitor, } = require("../../helpers/chat/LLMPerformanceMonitor"); const { v4: uuidv4 } = require("uuid"); const { MODEL_MAP } = require("../modelMap"); const { writeResponseChunk, clientAbortedHandler, } = require("../../helpers/chat/responses"); class DeepSeekLLM { constructor(embedder = null, modelPreference = null) { if (!process.env.DEEPSEEK_API_KEY) throw new Error("No DeepSeek API key was set."); const { OpenAI: OpenAIApi } = require("openai"); this.openai = new OpenAIApi({ apiKey: process.env.DEEPSEEK_API_KEY, baseURL: "https://api.deepseek.com/v1", }); this.model = modelPreference || process.env.DEEPSEEK_MODEL_PREF || "deepseek-chat"; this.limits = { history: this.promptWindowLimit() * 0.15, system: this.promptWindowLimit() * 0.15, user: this.promptWindowLimit() * 0.7, }; this.embedder = embedder ?? new NativeEmbedder(); this.defaultTemp = 0.7; this.log("Initialized with model:", this.model); } log(text, ...args) { console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args); } #appendContext(contextTexts = []) { if (!contextTexts || !contextTexts.length) return ""; return ( "\nContext:\n" + contextTexts .map((text, i) => { return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`; }) .join("") ); } streamingEnabled() { return "streamGetChatCompletion" in this; } static promptWindowLimit(modelName) { return MODEL_MAP.deepseek[modelName] ?? 8192; } promptWindowLimit() { return MODEL_MAP.deepseek[this.model] ?? 8192; } async isValidChatCompletionModel(modelName = "") { const models = await this.openai.models.list().catch(() => ({ data: [] })); return models.data.some((model) => model.id === modelName); } constructPrompt({ systemPrompt = "", contextTexts = [], chatHistory = [], userPrompt = "", }) { const prompt = { role: "system", content: `${systemPrompt}${this.#appendContext(contextTexts)}`, }; return [prompt, ...chatHistory, { role: "user", content: userPrompt }]; } /** * Parses and prepends reasoning from the response and returns the full text response. * @param {Object} response * @returns {string} */ #parseReasoningFromResponse({ message }) { let textResponse = message?.content; if ( !!message?.reasoning_content && message.reasoning_content.trim().length > 0 ) textResponse = `<think>${message.reasoning_content}</think>${textResponse}`; return textResponse; } async getChatCompletion(messages = null, { temperature = 0.7 }) { if (!(await this.isValidChatCompletionModel(this.model))) throw new Error( `DeepSeek chat: ${this.model} is not valid for chat completion!` ); const result = await LLMPerformanceMonitor.measureAsyncFunction( this.openai.chat.completions .create({ model: this.model, messages, temperature, }) .catch((e) => { throw new Error(e.message); }) ); if ( !result?.output?.hasOwnProperty("choices") || result?.output?.choices?.length === 0 ) throw new Error( `Invalid response body returned from DeepSeek: ${JSON.stringify(result.output)}` ); return { textResponse: this.#parseReasoningFromResponse(result.output.choices[0]), metrics: { prompt_tokens: result.output.usage.prompt_tokens || 0, completion_tokens: result.output.usage.completion_tokens || 0, total_tokens: result.output.usage.total_tokens || 0, outputTps: result.output.usage.completion_tokens / result.duration, duration: result.duration, }, }; } async streamGetChatCompletion(messages = null, { temperature = 0.7 }) { if (!(await this.isValidChatCompletionModel(this.model))) throw new Error( `DeepSeek chat: ${this.model} is not valid for chat completion!` ); const measuredStreamRequest = await LLMPerformanceMonitor.measureStream( this.openai.chat.completions.create({ model: this.model, stream: true, messages, temperature, }), messages, false ); return measuredStreamRequest; } // TODO: This is a copy of the generic handleStream function in responses.js // to specifically handle the DeepSeek reasoning model `reasoning_content` field. // When or if ever possible, we should refactor this to be in the generic function. handleStream(response, stream, responseProps) { const { uuid = uuidv4(), sources = [] } = responseProps; let hasUsageMetrics = false; let usage = { completion_tokens: 0, }; return new Promise(async (resolve) => { let fullText = ""; let reasoningText = ""; // Establish listener to early-abort a streaming response // in case things go sideways or the user does not like the response. // We preserve the generated text but continue as if chat was completed // to preserve previously generated content. const handleAbort = () => { stream?.endMeasurement(usage); clientAbortedHandler(resolve, fullText); }; response.on("close", handleAbort); try { for await (const chunk of stream) { const message = chunk?.choices?.[0]; const token = message?.delta?.content; const reasoningToken = message?.delta?.reasoning_content; if ( chunk.hasOwnProperty("usage") && // exists !!chunk.usage && // is not null Object.values(chunk.usage).length > 0 // has values ) { if (chunk.usage.hasOwnProperty("prompt_tokens")) { usage.prompt_tokens = Number(chunk.usage.prompt_tokens); } if (chunk.usage.hasOwnProperty("completion_tokens")) { hasUsageMetrics = true; // to stop estimating counter usage.completion_tokens = Number(chunk.usage.completion_tokens); } } // Reasoning models will always return the reasoning text before the token text. if (reasoningToken) { // If the reasoning text is empty (''), we need to initialize it // and send the first chunk of reasoning text. if (reasoningText.length === 0) { writeResponseChunk(response, { uuid, sources: [], type: "textResponseChunk", textResponse: `<think>${reasoningToken}`, close: false, error: false, }); reasoningText += `<think>${reasoningToken}`; continue; } else { writeResponseChunk(response, { uuid, sources: [], type: "textResponseChunk", textResponse: reasoningToken, close: false, error: false, }); reasoningText += reasoningToken; } } // If the reasoning text is not empty, but the reasoning token is empty // and the token text is not empty we need to close the reasoning text and begin sending the token text. if (!!reasoningText && !reasoningToken && token) { writeResponseChunk(response, { uuid, sources: [], type: "textResponseChunk", textResponse: `</think>`, close: false, error: false, }); fullText += `${reasoningText}</think>`; reasoningText = ""; } if (token) { fullText += token; // If we never saw a usage metric, we can estimate them by number of completion chunks if (!hasUsageMetrics) usage.completion_tokens++; writeResponseChunk(response, { uuid, sources: [], type: "textResponseChunk", textResponse: token, close: false, error: false, }); } // LocalAi returns '' and others return null on chunks - the last chunk is not "" or null. // Either way, the key `finish_reason` must be present to determine ending chunk. if ( message?.hasOwnProperty("finish_reason") && // Got valid message and it is an object with finish_reason message.finish_reason !== "" && message.finish_reason !== null ) { writeResponseChunk(response, { uuid, sources, type: "textResponseChunk", textResponse: "", close: true, error: false, }); response.removeListener("close", handleAbort); stream?.endMeasurement(usage); resolve(fullText); break; // Break streaming when a valid finish_reason is first encountered } } } catch (e) { console.log(`\x1b[43m\x1b[34m[STREAMING ERROR]\x1b[0m ${e.message}`); writeResponseChunk(response, { uuid, type: "abort", textResponse: null, sources: [], close: true, error: e.message, }); stream?.endMeasurement(usage); resolve(fullText); // Return what we currently have - if anything. } }); } async embedTextInput(textInput) { return await this.embedder.embedTextInput(textInput); } async embedChunks(textChunks = []) { return await this.embedder.embedChunks(textChunks); } async compressMessages(promptArgs = {}, rawHistory = []) { const { messageArrayCompressor } = require("../../helpers/chat"); const messageArray = this.constructPrompt(promptArgs); return await messageArrayCompressor(this, messageArray, rawHistory); } } module.exports = { DeepSeekLLM, };