const { maximumChunkLength } = require("../../helpers"); const { Ollama } = require("ollama"); class OllamaEmbedder { constructor() { if (!process.env.EMBEDDING_BASE_PATH) throw new Error("No embedding base path was set."); if (!process.env.EMBEDDING_MODEL_PREF) throw new Error("No embedding model was set."); this.basePath = process.env.EMBEDDING_BASE_PATH; this.model = process.env.EMBEDDING_MODEL_PREF; // Limit of how many strings we can process in a single pass to stay with resource or network limits this.maxConcurrentChunks = 1; this.embeddingMaxChunkLength = maximumChunkLength(); this.client = new Ollama({ host: this.basePath }); this.log( `initialized with model ${this.model} at ${this.basePath}. num_ctx: ${this.embeddingMaxChunkLength}` ); } log(text, ...args) { console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args); } /** * Checks if the Ollama service is alive by pinging the base path. * @returns {Promise<boolean>} - A promise that resolves to true if the service is alive, false otherwise. */ async #isAlive() { return await fetch(this.basePath) .then((res) => res.ok) .catch((e) => { this.log(e.message); return false; }); } async embedTextInput(textInput) { const result = await this.embedChunks( Array.isArray(textInput) ? textInput : [textInput] ); return result?.[0] || []; } /** * This function takes an array of text chunks and embeds them using the Ollama API. * chunks are processed sequentially to avoid overwhelming the API with too many requests * or running out of resources on the endpoint running the ollama instance. * * We will use the num_ctx option to set the maximum context window to the max chunk length defined by the user in the settings * so that the maximum context window is used and content is not truncated. * * We also assume the default keep alive option. This could cause issues with models being unloaded and reloaded * on load memory machines, but that is simply a user-end issue we cannot control. If the LLM and embedder are * constantly being loaded and unloaded, the user should use another LLM or Embedder to avoid this issue. * @param {string[]} textChunks - An array of text chunks to embed. * @returns {Promise<Array<number[]>>} - A promise that resolves to an array of embeddings. */ async embedChunks(textChunks = []) { if (!(await this.#isAlive())) throw new Error( `Ollama service could not be reached. Is Ollama running?` ); this.log( `Embedding ${textChunks.length} chunks of text with ${this.model}.` ); let data = []; let error = null; for (const chunk of textChunks) { try { const res = await this.client.embeddings({ model: this.model, prompt: chunk, options: { // Always set the num_ctx to the max chunk length defined by the user in the settings // so that the maximum context window is used and content is not truncated. num_ctx: this.embeddingMaxChunkLength, }, }); const { embedding } = res; if (!Array.isArray(embedding) || embedding.length === 0) throw new Error("Ollama returned an empty embedding for chunk!"); data.push(embedding); } catch (err) { this.log(err.message); error = err.message; data = []; break; } } if (!!error) throw new Error(`Ollama Failed to embed: ${error}`); return data.length > 0 ? data : null; } } module.exports = { OllamaEmbedder, };