mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2025-03-19 16:42:22 +00:00
* WIP performance metric tracking * fix: patch UI trying to .toFixed() null metric Anthropic tracking migraiton cleanup logs * Apipie implmentation, not tested * Cleanup Anthropic notes, Add support for AzureOpenAI tracking * bedrock token metric tracking * Cohere support * feat: improve default stream handler to track for provider who are actually OpenAI compliant in usage reporting add deepseek support * feat: Add FireworksAI tracking reporting fix: improve handler when usage:null is reported (why?) * Add token reporting for GenericOpenAI * token reporting for koboldcpp + lmstudio * lint * support Groq token tracking * HF token tracking * token tracking for togetherai * LiteLLM token tracking * linting + Mitral token tracking support * XAI token metric reporting * native provider runner * LocalAI token tracking * Novita token tracking * OpenRouter token tracking * Apipie stream metrics * textwebgenui token tracking * perplexity token reporting * ollama token reporting * lint * put back comment * Rip out LC ollama wrapper and use official library * patch images with new ollama lib * improve ollama offline message * fix image handling in ollama llm provider * lint * NVIDIA NIM token tracking * update openai compatbility responses * UI/UX show/hide metrics on click for user preference * update bedrock client --------- Co-authored-by: shatfield4 <seanhatfield5@gmail.com>
245 lines
7 KiB
JavaScript
245 lines
7 KiB
JavaScript
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
|
|
const {
|
|
LLMPerformanceMonitor,
|
|
} = require("../../helpers/chat/LLMPerformanceMonitor");
|
|
const {
|
|
handleDefaultStreamResponseV2,
|
|
} = require("../../helpers/chat/responses");
|
|
|
|
class NvidiaNimLLM {
|
|
constructor(embedder = null, modelPreference = null) {
|
|
if (!process.env.NVIDIA_NIM_LLM_BASE_PATH)
|
|
throw new Error("No Nvidia NIM API Base Path was set.");
|
|
|
|
const { OpenAI: OpenAIApi } = require("openai");
|
|
this.nvidiaNim = new OpenAIApi({
|
|
baseURL: parseNvidiaNimBasePath(process.env.NVIDIA_NIM_LLM_BASE_PATH),
|
|
apiKey: null,
|
|
});
|
|
|
|
this.model = modelPreference || process.env.NVIDIA_NIM_LLM_MODEL_PREF;
|
|
this.limits = {
|
|
history: this.promptWindowLimit() * 0.15,
|
|
system: this.promptWindowLimit() * 0.15,
|
|
user: this.promptWindowLimit() * 0.7,
|
|
};
|
|
|
|
this.embedder = embedder ?? new NativeEmbedder();
|
|
this.defaultTemp = 0.7;
|
|
this.#log(
|
|
`Loaded with model: ${this.model} with context window: ${this.promptWindowLimit()}`
|
|
);
|
|
}
|
|
|
|
#log(text, ...args) {
|
|
console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args);
|
|
}
|
|
|
|
#appendContext(contextTexts = []) {
|
|
if (!contextTexts || !contextTexts.length) return "";
|
|
return (
|
|
"\nContext:\n" +
|
|
contextTexts
|
|
.map((text, i) => {
|
|
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
|
})
|
|
.join("")
|
|
);
|
|
}
|
|
|
|
/**
|
|
* Set the model token limit `NVIDIA_NIM_LLM_MODEL_TOKEN_LIMIT` for the given model ID
|
|
* @param {string} modelId
|
|
* @param {string} basePath
|
|
* @returns {Promise<void>}
|
|
*/
|
|
static async setModelTokenLimit(modelId, basePath = null) {
|
|
if (!modelId) return;
|
|
const { OpenAI: OpenAIApi } = require("openai");
|
|
const openai = new OpenAIApi({
|
|
baseURL: parseNvidiaNimBasePath(
|
|
basePath || process.env.NVIDIA_NIM_LLM_BASE_PATH
|
|
),
|
|
apiKey: null,
|
|
});
|
|
const model = await openai.models
|
|
.list()
|
|
.then((results) => results.data)
|
|
.catch(() => {
|
|
return [];
|
|
});
|
|
|
|
if (!model.length) return;
|
|
const modelInfo = model.find((model) => model.id === modelId);
|
|
if (!modelInfo) return;
|
|
process.env.NVIDIA_NIM_LLM_MODEL_TOKEN_LIMIT = Number(
|
|
modelInfo.max_model_len || 4096
|
|
);
|
|
}
|
|
|
|
streamingEnabled() {
|
|
return "streamGetChatCompletion" in this;
|
|
}
|
|
|
|
static promptWindowLimit(_modelName) {
|
|
const limit = process.env.NVIDIA_NIM_LLM_MODEL_TOKEN_LIMIT || 4096;
|
|
if (!limit || isNaN(Number(limit)))
|
|
throw new Error("No Nvidia NIM token context limit was set.");
|
|
return Number(limit);
|
|
}
|
|
|
|
// Ensure the user set a value for the token limit
|
|
// and if undefined - assume 4096 window.
|
|
promptWindowLimit() {
|
|
const limit = process.env.NVIDIA_NIM_LLM_MODEL_TOKEN_LIMIT || 4096;
|
|
if (!limit || isNaN(Number(limit)))
|
|
throw new Error("No Nvidia NIM token context limit was set.");
|
|
return Number(limit);
|
|
}
|
|
|
|
async isValidChatCompletionModel(_ = "") {
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Generates appropriate content array for a message + attachments.
|
|
* @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}}
|
|
* @returns {string|object[]}
|
|
*/
|
|
#generateContent({ userPrompt, attachments = [] }) {
|
|
if (!attachments.length) {
|
|
return userPrompt;
|
|
}
|
|
|
|
const content = [{ type: "text", text: userPrompt }];
|
|
for (let attachment of attachments) {
|
|
content.push({
|
|
type: "image_url",
|
|
image_url: {
|
|
url: attachment.contentString,
|
|
detail: "auto",
|
|
},
|
|
});
|
|
}
|
|
return content.flat();
|
|
}
|
|
|
|
/**
|
|
* Construct the user prompt for this model.
|
|
* @param {{attachments: import("../../helpers").Attachment[]}} param0
|
|
* @returns
|
|
*/
|
|
constructPrompt({
|
|
systemPrompt = "",
|
|
contextTexts = [],
|
|
chatHistory = [],
|
|
userPrompt = "",
|
|
attachments = [],
|
|
}) {
|
|
const prompt = {
|
|
role: "system",
|
|
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
|
|
};
|
|
return [
|
|
prompt,
|
|
...chatHistory,
|
|
{
|
|
role: "user",
|
|
content: this.#generateContent({ userPrompt, attachments }),
|
|
},
|
|
];
|
|
}
|
|
|
|
async getChatCompletion(messages = null, { temperature = 0.7 }) {
|
|
if (!this.model)
|
|
throw new Error(
|
|
`Nvidia NIM chat: ${this.model} is not valid or defined model for chat completion!`
|
|
);
|
|
|
|
const result = await LLMPerformanceMonitor.measureAsyncFunction(
|
|
this.nvidiaNim.chat.completions
|
|
.create({
|
|
model: this.model,
|
|
messages,
|
|
temperature,
|
|
})
|
|
.catch((e) => {
|
|
throw new Error(e.message);
|
|
})
|
|
);
|
|
|
|
if (
|
|
!result.output.hasOwnProperty("choices") ||
|
|
result.output.choices.length === 0
|
|
)
|
|
return null;
|
|
|
|
return {
|
|
textResponse: result.output.choices[0].message.content,
|
|
metrics: {
|
|
prompt_tokens: result.output.usage.prompt_tokens || 0,
|
|
completion_tokens: result.output.usage.completion_tokens || 0,
|
|
total_tokens: result.output.usage.total_tokens || 0,
|
|
outputTps: result.output.usage.completion_tokens / result.duration,
|
|
duration: result.duration,
|
|
},
|
|
};
|
|
}
|
|
|
|
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
|
|
if (!this.model)
|
|
throw new Error(
|
|
`Nvidia NIM chat: ${this.model} is not valid or defined model for chat completion!`
|
|
);
|
|
|
|
const measuredStreamRequest = await LLMPerformanceMonitor.measureStream(
|
|
this.nvidiaNim.chat.completions.create({
|
|
model: this.model,
|
|
stream: true,
|
|
messages,
|
|
temperature,
|
|
}),
|
|
messages
|
|
);
|
|
return measuredStreamRequest;
|
|
}
|
|
|
|
handleStream(response, stream, responseProps) {
|
|
return handleDefaultStreamResponseV2(response, stream, responseProps);
|
|
}
|
|
|
|
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
|
|
async embedTextInput(textInput) {
|
|
return await this.embedder.embedTextInput(textInput);
|
|
}
|
|
async embedChunks(textChunks = []) {
|
|
return await this.embedder.embedChunks(textChunks);
|
|
}
|
|
|
|
async compressMessages(promptArgs = {}, rawHistory = []) {
|
|
const { messageArrayCompressor } = require("../../helpers/chat");
|
|
const messageArray = this.constructPrompt(promptArgs);
|
|
return await messageArrayCompressor(this, messageArray, rawHistory);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Parse the base path for the Nvidia NIM container API. Since the base path must end in /v1 and cannot have a trailing slash,
|
|
* and the user can possibly set it to anything and likely incorrectly due to pasting behaviors, we need to ensure it is in the correct format.
|
|
* @param {string} basePath
|
|
* @returns {string}
|
|
*/
|
|
function parseNvidiaNimBasePath(providedBasePath = "") {
|
|
try {
|
|
const baseURL = new URL(providedBasePath);
|
|
const basePath = `${baseURL.origin}/v1`;
|
|
return basePath;
|
|
} catch (e) {
|
|
return providedBasePath;
|
|
}
|
|
}
|
|
|
|
module.exports = {
|
|
NvidiaNimLLM,
|
|
parseNvidiaNimBasePath,
|
|
};
|