mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2025-03-13 13:42:23 +00:00
* feat: add new model provider PPIO * fix: fix ppio model fetching * fix: code lint * reorder LLM update interface for streaming and chats to use valid keys linting --------- Co-authored-by: timothycarambat <rambat1010@gmail.com>
266 lines
7.5 KiB
JavaScript
266 lines
7.5 KiB
JavaScript
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
|
|
const {
|
|
handleDefaultStreamResponseV2,
|
|
} = require("../../helpers/chat/responses");
|
|
const fs = require("fs");
|
|
const path = require("path");
|
|
const { safeJsonParse } = require("../../http");
|
|
const {
|
|
LLMPerformanceMonitor,
|
|
} = require("../../helpers/chat/LLMPerformanceMonitor");
|
|
const cacheFolder = path.resolve(
|
|
process.env.STORAGE_DIR
|
|
? path.resolve(process.env.STORAGE_DIR, "models", "ppio")
|
|
: path.resolve(__dirname, `../../../storage/models/ppio`)
|
|
);
|
|
|
|
class PPIOLLM {
|
|
constructor(embedder = null, modelPreference = null) {
|
|
if (!process.env.PPIO_API_KEY) throw new Error("No PPIO API key was set.");
|
|
|
|
const { OpenAI: OpenAIApi } = require("openai");
|
|
this.basePath = "https://api.ppinfra.com/v3/openai/";
|
|
this.openai = new OpenAIApi({
|
|
baseURL: this.basePath,
|
|
apiKey: process.env.PPIO_API_KEY ?? null,
|
|
defaultHeaders: {
|
|
"HTTP-Referer": "https://anythingllm.com",
|
|
"X-API-Source": "anythingllm",
|
|
},
|
|
});
|
|
this.model =
|
|
modelPreference ||
|
|
process.env.PPIO_MODEL_PREF ||
|
|
"qwen/qwen2.5-32b-instruct";
|
|
this.limits = {
|
|
history: this.promptWindowLimit() * 0.15,
|
|
system: this.promptWindowLimit() * 0.15,
|
|
user: this.promptWindowLimit() * 0.7,
|
|
};
|
|
|
|
this.embedder = embedder ?? new NativeEmbedder();
|
|
this.defaultTemp = 0.7;
|
|
|
|
if (!fs.existsSync(cacheFolder))
|
|
fs.mkdirSync(cacheFolder, { recursive: true });
|
|
this.cacheModelPath = path.resolve(cacheFolder, "models.json");
|
|
this.cacheAtPath = path.resolve(cacheFolder, ".cached_at");
|
|
|
|
this.log(`Loaded with model: ${this.model}`);
|
|
}
|
|
|
|
log(text, ...args) {
|
|
console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args);
|
|
}
|
|
|
|
async #syncModels() {
|
|
if (fs.existsSync(this.cacheModelPath) && !this.#cacheIsStale())
|
|
return false;
|
|
|
|
this.log("Model cache is not present or stale. Fetching from PPIO API.");
|
|
await fetchPPIOModels();
|
|
return;
|
|
}
|
|
|
|
#cacheIsStale() {
|
|
const MAX_STALE = 6.048e8; // 1 Week in MS
|
|
if (!fs.existsSync(this.cacheAtPath)) return true;
|
|
const now = Number(new Date());
|
|
const timestampMs = Number(fs.readFileSync(this.cacheAtPath));
|
|
return now - timestampMs > MAX_STALE;
|
|
}
|
|
|
|
#appendContext(contextTexts = []) {
|
|
if (!contextTexts || !contextTexts.length) return "";
|
|
return (
|
|
"\nContext:\n" +
|
|
contextTexts
|
|
.map((text, i) => {
|
|
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
|
})
|
|
.join("")
|
|
);
|
|
}
|
|
|
|
models() {
|
|
if (!fs.existsSync(this.cacheModelPath)) return {};
|
|
return safeJsonParse(
|
|
fs.readFileSync(this.cacheModelPath, { encoding: "utf-8" }),
|
|
{}
|
|
);
|
|
}
|
|
|
|
streamingEnabled() {
|
|
return "streamGetChatCompletion" in this;
|
|
}
|
|
|
|
promptWindowLimit() {
|
|
const model = this.models()[this.model];
|
|
if (!model) return 4096; // Default to 4096 if we cannot find the model
|
|
return model?.maxLength || 4096;
|
|
}
|
|
|
|
async isValidChatCompletionModel(model = "") {
|
|
await this.#syncModels();
|
|
const availableModels = this.models();
|
|
return Object.prototype.hasOwnProperty.call(availableModels, model);
|
|
}
|
|
|
|
/**
|
|
* Generates appropriate content array for a message + attachments.
|
|
* @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}}
|
|
* @returns {string|object[]}
|
|
*/
|
|
#generateContent({ userPrompt, attachments = [] }) {
|
|
if (!attachments.length) {
|
|
return userPrompt;
|
|
}
|
|
|
|
const content = [{ type: "text", text: userPrompt }];
|
|
for (let attachment of attachments) {
|
|
content.push({
|
|
type: "image_url",
|
|
image_url: {
|
|
url: attachment.contentString,
|
|
detail: "auto",
|
|
},
|
|
});
|
|
}
|
|
return content.flat();
|
|
}
|
|
|
|
constructPrompt({
|
|
systemPrompt = "",
|
|
contextTexts = [],
|
|
chatHistory = [],
|
|
userPrompt = "",
|
|
// attachments = [], - not supported
|
|
}) {
|
|
const prompt = {
|
|
role: "system",
|
|
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
|
|
};
|
|
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
|
|
}
|
|
|
|
async getChatCompletion(messages = null, { temperature = 0.7 }) {
|
|
if (!(await this.isValidChatCompletionModel(this.model)))
|
|
throw new Error(
|
|
`PPIO chat: ${this.model} is not valid for chat completion!`
|
|
);
|
|
|
|
const result = await LLMPerformanceMonitor.measureAsyncFunction(
|
|
this.openai.chat.completions
|
|
.create({
|
|
model: this.model,
|
|
messages,
|
|
temperature,
|
|
})
|
|
.catch((e) => {
|
|
throw new Error(e.message);
|
|
})
|
|
);
|
|
|
|
if (
|
|
!Object.prototype.hasOwnProperty.call(result.output, "choices") ||
|
|
result.output.choices.length === 0
|
|
)
|
|
return null;
|
|
|
|
return {
|
|
textResponse: result.output.choices[0].message.content,
|
|
metrics: {
|
|
prompt_tokens: result.output.usage.prompt_tokens || 0,
|
|
completion_tokens: result.output.usage.completion_tokens || 0,
|
|
total_tokens: result.output.usage.total_tokens || 0,
|
|
outputTps: result.output.usage.completion_tokens / result.duration,
|
|
duration: result.duration,
|
|
},
|
|
};
|
|
}
|
|
|
|
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
|
|
if (!(await this.isValidChatCompletionModel(this.model)))
|
|
throw new Error(
|
|
`PPIO chat: ${this.model} is not valid for chat completion!`
|
|
);
|
|
|
|
const measuredStreamRequest = await LLMPerformanceMonitor.measureStream(
|
|
this.openai.chat.completions.create({
|
|
model: this.model,
|
|
stream: true,
|
|
messages,
|
|
temperature,
|
|
}),
|
|
messages
|
|
);
|
|
return measuredStreamRequest;
|
|
}
|
|
|
|
handleStream(response, stream, responseProps) {
|
|
return handleDefaultStreamResponseV2(response, stream, responseProps);
|
|
}
|
|
|
|
async embedTextInput(textInput) {
|
|
return await this.embedder.embedTextInput(textInput);
|
|
}
|
|
async embedChunks(textChunks = []) {
|
|
return await this.embedder.embedChunks(textChunks);
|
|
}
|
|
|
|
async compressMessages(promptArgs = {}, rawHistory = []) {
|
|
const { messageArrayCompressor } = require("../../helpers/chat");
|
|
const messageArray = this.constructPrompt(promptArgs);
|
|
return await messageArrayCompressor(this, messageArray, rawHistory);
|
|
}
|
|
}
|
|
|
|
async function fetchPPIOModels() {
|
|
return await fetch(`https://api.ppinfra.com/v3/openai/models`, {
|
|
method: "GET",
|
|
headers: {
|
|
"Content-Type": "application/json",
|
|
Authorization: `Bearer ${process.env.PPIO_API_KEY}`,
|
|
},
|
|
})
|
|
.then((res) => res.json())
|
|
.then(({ data = [] }) => {
|
|
const models = {};
|
|
data.forEach((model) => {
|
|
const organization = model.id?.split("/")?.[0] || "PPIO";
|
|
models[model.id] = {
|
|
id: model.id,
|
|
name: model.display_name || model.title || model.id,
|
|
organization,
|
|
maxLength: model.context_size || 4096,
|
|
};
|
|
});
|
|
|
|
if (!fs.existsSync(cacheFolder))
|
|
fs.mkdirSync(cacheFolder, { recursive: true });
|
|
fs.writeFileSync(
|
|
path.resolve(cacheFolder, "models.json"),
|
|
JSON.stringify(models),
|
|
{
|
|
encoding: "utf-8",
|
|
}
|
|
);
|
|
fs.writeFileSync(
|
|
path.resolve(cacheFolder, ".cached_at"),
|
|
String(Number(new Date())),
|
|
{
|
|
encoding: "utf-8",
|
|
}
|
|
);
|
|
return models;
|
|
})
|
|
.catch((e) => {
|
|
console.error(e);
|
|
return {};
|
|
});
|
|
}
|
|
|
|
module.exports = {
|
|
PPIOLLM,
|
|
fetchPPIOModels,
|
|
};
|