anything-llm/server/utils/AiProviders/ppio/index.js
cnJasonZ 2aeb4c2961
Add new model provider PPIO ()
* feat: add new model provider PPIO

* fix: fix ppio model fetching

* fix: code lint

* reorder LLM
update interface for streaming and chats to use valid keys
linting

---------

Co-authored-by: timothycarambat <rambat1010@gmail.com>
2025-02-27 10:53:00 -08:00

266 lines
7.5 KiB
JavaScript

const { NativeEmbedder } = require("../../EmbeddingEngines/native");
const {
handleDefaultStreamResponseV2,
} = require("../../helpers/chat/responses");
const fs = require("fs");
const path = require("path");
const { safeJsonParse } = require("../../http");
const {
LLMPerformanceMonitor,
} = require("../../helpers/chat/LLMPerformanceMonitor");
const cacheFolder = path.resolve(
process.env.STORAGE_DIR
? path.resolve(process.env.STORAGE_DIR, "models", "ppio")
: path.resolve(__dirname, `../../../storage/models/ppio`)
);
class PPIOLLM {
constructor(embedder = null, modelPreference = null) {
if (!process.env.PPIO_API_KEY) throw new Error("No PPIO API key was set.");
const { OpenAI: OpenAIApi } = require("openai");
this.basePath = "https://api.ppinfra.com/v3/openai/";
this.openai = new OpenAIApi({
baseURL: this.basePath,
apiKey: process.env.PPIO_API_KEY ?? null,
defaultHeaders: {
"HTTP-Referer": "https://anythingllm.com",
"X-API-Source": "anythingllm",
},
});
this.model =
modelPreference ||
process.env.PPIO_MODEL_PREF ||
"qwen/qwen2.5-32b-instruct";
this.limits = {
history: this.promptWindowLimit() * 0.15,
system: this.promptWindowLimit() * 0.15,
user: this.promptWindowLimit() * 0.7,
};
this.embedder = embedder ?? new NativeEmbedder();
this.defaultTemp = 0.7;
if (!fs.existsSync(cacheFolder))
fs.mkdirSync(cacheFolder, { recursive: true });
this.cacheModelPath = path.resolve(cacheFolder, "models.json");
this.cacheAtPath = path.resolve(cacheFolder, ".cached_at");
this.log(`Loaded with model: ${this.model}`);
}
log(text, ...args) {
console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args);
}
async #syncModels() {
if (fs.existsSync(this.cacheModelPath) && !this.#cacheIsStale())
return false;
this.log("Model cache is not present or stale. Fetching from PPIO API.");
await fetchPPIOModels();
return;
}
#cacheIsStale() {
const MAX_STALE = 6.048e8; // 1 Week in MS
if (!fs.existsSync(this.cacheAtPath)) return true;
const now = Number(new Date());
const timestampMs = Number(fs.readFileSync(this.cacheAtPath));
return now - timestampMs > MAX_STALE;
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
models() {
if (!fs.existsSync(this.cacheModelPath)) return {};
return safeJsonParse(
fs.readFileSync(this.cacheModelPath, { encoding: "utf-8" }),
{}
);
}
streamingEnabled() {
return "streamGetChatCompletion" in this;
}
promptWindowLimit() {
const model = this.models()[this.model];
if (!model) return 4096; // Default to 4096 if we cannot find the model
return model?.maxLength || 4096;
}
async isValidChatCompletionModel(model = "") {
await this.#syncModels();
const availableModels = this.models();
return Object.prototype.hasOwnProperty.call(availableModels, model);
}
/**
* Generates appropriate content array for a message + attachments.
* @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}}
* @returns {string|object[]}
*/
#generateContent({ userPrompt, attachments = [] }) {
if (!attachments.length) {
return userPrompt;
}
const content = [{ type: "text", text: userPrompt }];
for (let attachment of attachments) {
content.push({
type: "image_url",
image_url: {
url: attachment.contentString,
detail: "auto",
},
});
}
return content.flat();
}
constructPrompt({
systemPrompt = "",
contextTexts = [],
chatHistory = [],
userPrompt = "",
// attachments = [], - not supported
}) {
const prompt = {
role: "system",
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
return [prompt, ...chatHistory, { role: "user", content: userPrompt }];
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`PPIO chat: ${this.model} is not valid for chat completion!`
);
const result = await LLMPerformanceMonitor.measureAsyncFunction(
this.openai.chat.completions
.create({
model: this.model,
messages,
temperature,
})
.catch((e) => {
throw new Error(e.message);
})
);
if (
!Object.prototype.hasOwnProperty.call(result.output, "choices") ||
result.output.choices.length === 0
)
return null;
return {
textResponse: result.output.choices[0].message.content,
metrics: {
prompt_tokens: result.output.usage.prompt_tokens || 0,
completion_tokens: result.output.usage.completion_tokens || 0,
total_tokens: result.output.usage.total_tokens || 0,
outputTps: result.output.usage.completion_tokens / result.duration,
duration: result.duration,
},
};
}
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`PPIO chat: ${this.model} is not valid for chat completion!`
);
const measuredStreamRequest = await LLMPerformanceMonitor.measureStream(
this.openai.chat.completions.create({
model: this.model,
stream: true,
messages,
temperature,
}),
messages
);
return measuredStreamRequest;
}
handleStream(response, stream, responseProps) {
return handleDefaultStreamResponseV2(response, stream, responseProps);
}
async embedTextInput(textInput) {
return await this.embedder.embedTextInput(textInput);
}
async embedChunks(textChunks = []) {
return await this.embedder.embedChunks(textChunks);
}
async compressMessages(promptArgs = {}, rawHistory = []) {
const { messageArrayCompressor } = require("../../helpers/chat");
const messageArray = this.constructPrompt(promptArgs);
return await messageArrayCompressor(this, messageArray, rawHistory);
}
}
async function fetchPPIOModels() {
return await fetch(`https://api.ppinfra.com/v3/openai/models`, {
method: "GET",
headers: {
"Content-Type": "application/json",
Authorization: `Bearer ${process.env.PPIO_API_KEY}`,
},
})
.then((res) => res.json())
.then(({ data = [] }) => {
const models = {};
data.forEach((model) => {
const organization = model.id?.split("/")?.[0] || "PPIO";
models[model.id] = {
id: model.id,
name: model.display_name || model.title || model.id,
organization,
maxLength: model.context_size || 4096,
};
});
if (!fs.existsSync(cacheFolder))
fs.mkdirSync(cacheFolder, { recursive: true });
fs.writeFileSync(
path.resolve(cacheFolder, "models.json"),
JSON.stringify(models),
{
encoding: "utf-8",
}
);
fs.writeFileSync(
path.resolve(cacheFolder, ".cached_at"),
String(Number(new Date())),
{
encoding: "utf-8",
}
);
return models;
})
.catch((e) => {
console.error(e);
return {};
});
}
module.exports = {
PPIOLLM,
fetchPPIOModels,
};