mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2025-03-29 08:56:26 +00:00
* implement dynamic fetching of togetherai models * implement caching for togetherai models * update gitignore for togetherai model caching * Remove models.json from git tracking * Remove .cached_at from git tracking * lint * revert unneeded change --------- Co-authored-by: Timothy Carambat <rambat1010@gmail.com>
257 lines
7.3 KiB
JavaScript
257 lines
7.3 KiB
JavaScript
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
|
|
const {
|
|
handleDefaultStreamResponseV2,
|
|
} = require("../../helpers/chat/responses");
|
|
const {
|
|
LLMPerformanceMonitor,
|
|
} = require("../../helpers/chat/LLMPerformanceMonitor");
|
|
const fs = require("fs");
|
|
const path = require("path");
|
|
const { safeJsonParse } = require("../../http");
|
|
|
|
const cacheFolder = path.resolve(
|
|
process.env.STORAGE_DIR
|
|
? path.resolve(process.env.STORAGE_DIR, "models", "togetherAi")
|
|
: path.resolve(__dirname, `../../../storage/models/togetherAi`)
|
|
);
|
|
|
|
async function togetherAiModels(apiKey = null) {
|
|
const cacheModelPath = path.resolve(cacheFolder, "models.json");
|
|
const cacheAtPath = path.resolve(cacheFolder, ".cached_at");
|
|
|
|
// If cache exists and is less than 1 week old, use it
|
|
if (fs.existsSync(cacheModelPath) && fs.existsSync(cacheAtPath)) {
|
|
const now = Number(new Date());
|
|
const timestampMs = Number(fs.readFileSync(cacheAtPath));
|
|
if (now - timestampMs <= 6.048e8) {
|
|
// 1 Week in MS
|
|
return safeJsonParse(
|
|
fs.readFileSync(cacheModelPath, { encoding: "utf-8" }),
|
|
[]
|
|
);
|
|
}
|
|
}
|
|
|
|
try {
|
|
const { OpenAI: OpenAIApi } = require("openai");
|
|
const openai = new OpenAIApi({
|
|
baseURL: "https://api.together.xyz/v1",
|
|
apiKey: apiKey || process.env.TOGETHER_AI_API_KEY || null,
|
|
});
|
|
|
|
const response = await openai.models.list();
|
|
|
|
// Filter and transform models into the expected format
|
|
// Only include chat models
|
|
const validModels = response.body
|
|
.filter((model) => ["chat"].includes(model.type))
|
|
.map((model) => ({
|
|
id: model.id,
|
|
name: model.display_name || model.id,
|
|
organization: model.organization || "Unknown",
|
|
type: model.type,
|
|
maxLength: model.context_length || 4096,
|
|
}));
|
|
|
|
// Cache the results
|
|
if (!fs.existsSync(cacheFolder))
|
|
fs.mkdirSync(cacheFolder, { recursive: true });
|
|
fs.writeFileSync(cacheModelPath, JSON.stringify(validModels), {
|
|
encoding: "utf-8",
|
|
});
|
|
fs.writeFileSync(cacheAtPath, String(Number(new Date())), {
|
|
encoding: "utf-8",
|
|
});
|
|
|
|
return validModels;
|
|
} catch (error) {
|
|
console.error("Error fetching Together AI models:", error);
|
|
// If cache exists but is stale, still use it as fallback
|
|
if (fs.existsSync(cacheModelPath)) {
|
|
return safeJsonParse(
|
|
fs.readFileSync(cacheModelPath, { encoding: "utf-8" }),
|
|
[]
|
|
);
|
|
}
|
|
return [];
|
|
}
|
|
}
|
|
|
|
class TogetherAiLLM {
|
|
constructor(embedder = null, modelPreference = null) {
|
|
if (!process.env.TOGETHER_AI_API_KEY)
|
|
throw new Error("No TogetherAI API key was set.");
|
|
const { OpenAI: OpenAIApi } = require("openai");
|
|
this.openai = new OpenAIApi({
|
|
baseURL: "https://api.together.xyz/v1",
|
|
apiKey: process.env.TOGETHER_AI_API_KEY ?? null,
|
|
});
|
|
this.model = modelPreference || process.env.TOGETHER_AI_MODEL_PREF;
|
|
this.limits = {
|
|
history: this.promptWindowLimit() * 0.15,
|
|
system: this.promptWindowLimit() * 0.15,
|
|
user: this.promptWindowLimit() * 0.7,
|
|
};
|
|
|
|
this.embedder = !embedder ? new NativeEmbedder() : embedder;
|
|
this.defaultTemp = 0.7;
|
|
}
|
|
|
|
#appendContext(contextTexts = []) {
|
|
if (!contextTexts || !contextTexts.length) return "";
|
|
return (
|
|
"\nContext:\n" +
|
|
contextTexts
|
|
.map((text, i) => {
|
|
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
|
})
|
|
.join("")
|
|
);
|
|
}
|
|
|
|
#generateContent({ userPrompt, attachments = [] }) {
|
|
if (!attachments.length) {
|
|
return userPrompt;
|
|
}
|
|
|
|
const content = [{ type: "text", text: userPrompt }];
|
|
for (let attachment of attachments) {
|
|
content.push({
|
|
type: "image_url",
|
|
image_url: {
|
|
url: attachment.contentString,
|
|
},
|
|
});
|
|
}
|
|
return content.flat();
|
|
}
|
|
|
|
async allModelInformation() {
|
|
const models = await togetherAiModels();
|
|
return models.reduce((acc, model) => {
|
|
acc[model.id] = model;
|
|
return acc;
|
|
}, {});
|
|
}
|
|
|
|
streamingEnabled() {
|
|
return "streamGetChatCompletion" in this;
|
|
}
|
|
|
|
static async promptWindowLimit(modelName) {
|
|
const models = await togetherAiModels();
|
|
const model = models.find((m) => m.id === modelName);
|
|
return model?.maxLength || 4096;
|
|
}
|
|
|
|
async promptWindowLimit() {
|
|
const models = await togetherAiModels();
|
|
const model = models.find((m) => m.id === this.model);
|
|
return model?.maxLength || 4096;
|
|
}
|
|
|
|
async isValidChatCompletionModel(model = "") {
|
|
const models = await togetherAiModels();
|
|
const foundModel = models.find((m) => m.id === model);
|
|
return foundModel && foundModel.type === "chat";
|
|
}
|
|
|
|
constructPrompt({
|
|
systemPrompt = "",
|
|
contextTexts = [],
|
|
chatHistory = [],
|
|
userPrompt = "",
|
|
attachments = [],
|
|
}) {
|
|
const prompt = {
|
|
role: "system",
|
|
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
|
|
};
|
|
return [
|
|
prompt,
|
|
...chatHistory,
|
|
{
|
|
role: "user",
|
|
content: this.#generateContent({ userPrompt, attachments }),
|
|
},
|
|
];
|
|
}
|
|
|
|
async getChatCompletion(messages = null, { temperature = 0.7 }) {
|
|
if (!(await this.isValidChatCompletionModel(this.model)))
|
|
throw new Error(
|
|
`TogetherAI chat: ${this.model} is not valid for chat completion!`
|
|
);
|
|
|
|
const result = await LLMPerformanceMonitor.measureAsyncFunction(
|
|
this.openai.chat.completions
|
|
.create({
|
|
model: this.model,
|
|
messages,
|
|
temperature,
|
|
})
|
|
.catch((e) => {
|
|
throw new Error(e.message);
|
|
})
|
|
);
|
|
|
|
if (
|
|
!result.output.hasOwnProperty("choices") ||
|
|
result.output.choices.length === 0
|
|
)
|
|
return null;
|
|
|
|
return {
|
|
textResponse: result.output.choices[0].message.content,
|
|
metrics: {
|
|
prompt_tokens: result.output.usage?.prompt_tokens || 0,
|
|
completion_tokens: result.output.usage?.completion_tokens || 0,
|
|
total_tokens: result.output.usage?.total_tokens || 0,
|
|
outputTps: result.output.usage?.completion_tokens / result.duration,
|
|
duration: result.duration,
|
|
},
|
|
};
|
|
}
|
|
|
|
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
|
|
if (!(await this.isValidChatCompletionModel(this.model)))
|
|
throw new Error(
|
|
`TogetherAI chat: ${this.model} is not valid for chat completion!`
|
|
);
|
|
|
|
const measuredStreamRequest = await LLMPerformanceMonitor.measureStream(
|
|
this.openai.chat.completions.create({
|
|
model: this.model,
|
|
stream: true,
|
|
messages,
|
|
temperature,
|
|
}),
|
|
messages,
|
|
false
|
|
);
|
|
return measuredStreamRequest;
|
|
}
|
|
|
|
handleStream(response, stream, responseProps) {
|
|
return handleDefaultStreamResponseV2(response, stream, responseProps);
|
|
}
|
|
|
|
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
|
|
async embedTextInput(textInput) {
|
|
return await this.embedder.embedTextInput(textInput);
|
|
}
|
|
async embedChunks(textChunks = []) {
|
|
return await this.embedder.embedChunks(textChunks);
|
|
}
|
|
|
|
async compressMessages(promptArgs = {}, rawHistory = []) {
|
|
const { messageArrayCompressor } = require("../../helpers/chat");
|
|
const messageArray = this.constructPrompt(promptArgs);
|
|
return await messageArrayCompressor(this, messageArray, rawHistory);
|
|
}
|
|
}
|
|
|
|
module.exports = {
|
|
TogetherAiLLM,
|
|
togetherAiModels,
|
|
};
|