anything-llm/server/utils/AiProviders/togetherAi/index.js
Sean Hatfield 48dcb22b25
Dynamic fetching of TogetherAI models ()
* implement dynamic fetching of togetherai models

* implement caching for togetherai models

* update gitignore for togetherai model caching

* Remove models.json from git tracking

* Remove .cached_at from git tracking

* lint

* revert unneeded change

---------

Co-authored-by: Timothy Carambat <rambat1010@gmail.com>
2025-01-24 11:06:59 -08:00

257 lines
7.3 KiB
JavaScript

const { NativeEmbedder } = require("../../EmbeddingEngines/native");
const {
handleDefaultStreamResponseV2,
} = require("../../helpers/chat/responses");
const {
LLMPerformanceMonitor,
} = require("../../helpers/chat/LLMPerformanceMonitor");
const fs = require("fs");
const path = require("path");
const { safeJsonParse } = require("../../http");
const cacheFolder = path.resolve(
process.env.STORAGE_DIR
? path.resolve(process.env.STORAGE_DIR, "models", "togetherAi")
: path.resolve(__dirname, `../../../storage/models/togetherAi`)
);
async function togetherAiModels(apiKey = null) {
const cacheModelPath = path.resolve(cacheFolder, "models.json");
const cacheAtPath = path.resolve(cacheFolder, ".cached_at");
// If cache exists and is less than 1 week old, use it
if (fs.existsSync(cacheModelPath) && fs.existsSync(cacheAtPath)) {
const now = Number(new Date());
const timestampMs = Number(fs.readFileSync(cacheAtPath));
if (now - timestampMs <= 6.048e8) {
// 1 Week in MS
return safeJsonParse(
fs.readFileSync(cacheModelPath, { encoding: "utf-8" }),
[]
);
}
}
try {
const { OpenAI: OpenAIApi } = require("openai");
const openai = new OpenAIApi({
baseURL: "https://api.together.xyz/v1",
apiKey: apiKey || process.env.TOGETHER_AI_API_KEY || null,
});
const response = await openai.models.list();
// Filter and transform models into the expected format
// Only include chat models
const validModels = response.body
.filter((model) => ["chat"].includes(model.type))
.map((model) => ({
id: model.id,
name: model.display_name || model.id,
organization: model.organization || "Unknown",
type: model.type,
maxLength: model.context_length || 4096,
}));
// Cache the results
if (!fs.existsSync(cacheFolder))
fs.mkdirSync(cacheFolder, { recursive: true });
fs.writeFileSync(cacheModelPath, JSON.stringify(validModels), {
encoding: "utf-8",
});
fs.writeFileSync(cacheAtPath, String(Number(new Date())), {
encoding: "utf-8",
});
return validModels;
} catch (error) {
console.error("Error fetching Together AI models:", error);
// If cache exists but is stale, still use it as fallback
if (fs.existsSync(cacheModelPath)) {
return safeJsonParse(
fs.readFileSync(cacheModelPath, { encoding: "utf-8" }),
[]
);
}
return [];
}
}
class TogetherAiLLM {
constructor(embedder = null, modelPreference = null) {
if (!process.env.TOGETHER_AI_API_KEY)
throw new Error("No TogetherAI API key was set.");
const { OpenAI: OpenAIApi } = require("openai");
this.openai = new OpenAIApi({
baseURL: "https://api.together.xyz/v1",
apiKey: process.env.TOGETHER_AI_API_KEY ?? null,
});
this.model = modelPreference || process.env.TOGETHER_AI_MODEL_PREF;
this.limits = {
history: this.promptWindowLimit() * 0.15,
system: this.promptWindowLimit() * 0.15,
user: this.promptWindowLimit() * 0.7,
};
this.embedder = !embedder ? new NativeEmbedder() : embedder;
this.defaultTemp = 0.7;
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
#generateContent({ userPrompt, attachments = [] }) {
if (!attachments.length) {
return userPrompt;
}
const content = [{ type: "text", text: userPrompt }];
for (let attachment of attachments) {
content.push({
type: "image_url",
image_url: {
url: attachment.contentString,
},
});
}
return content.flat();
}
async allModelInformation() {
const models = await togetherAiModels();
return models.reduce((acc, model) => {
acc[model.id] = model;
return acc;
}, {});
}
streamingEnabled() {
return "streamGetChatCompletion" in this;
}
static async promptWindowLimit(modelName) {
const models = await togetherAiModels();
const model = models.find((m) => m.id === modelName);
return model?.maxLength || 4096;
}
async promptWindowLimit() {
const models = await togetherAiModels();
const model = models.find((m) => m.id === this.model);
return model?.maxLength || 4096;
}
async isValidChatCompletionModel(model = "") {
const models = await togetherAiModels();
const foundModel = models.find((m) => m.id === model);
return foundModel && foundModel.type === "chat";
}
constructPrompt({
systemPrompt = "",
contextTexts = [],
chatHistory = [],
userPrompt = "",
attachments = [],
}) {
const prompt = {
role: "system",
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
return [
prompt,
...chatHistory,
{
role: "user",
content: this.#generateContent({ userPrompt, attachments }),
},
];
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`TogetherAI chat: ${this.model} is not valid for chat completion!`
);
const result = await LLMPerformanceMonitor.measureAsyncFunction(
this.openai.chat.completions
.create({
model: this.model,
messages,
temperature,
})
.catch((e) => {
throw new Error(e.message);
})
);
if (
!result.output.hasOwnProperty("choices") ||
result.output.choices.length === 0
)
return null;
return {
textResponse: result.output.choices[0].message.content,
metrics: {
prompt_tokens: result.output.usage?.prompt_tokens || 0,
completion_tokens: result.output.usage?.completion_tokens || 0,
total_tokens: result.output.usage?.total_tokens || 0,
outputTps: result.output.usage?.completion_tokens / result.duration,
duration: result.duration,
},
};
}
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
if (!(await this.isValidChatCompletionModel(this.model)))
throw new Error(
`TogetherAI chat: ${this.model} is not valid for chat completion!`
);
const measuredStreamRequest = await LLMPerformanceMonitor.measureStream(
this.openai.chat.completions.create({
model: this.model,
stream: true,
messages,
temperature,
}),
messages,
false
);
return measuredStreamRequest;
}
handleStream(response, stream, responseProps) {
return handleDefaultStreamResponseV2(response, stream, responseProps);
}
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
async embedTextInput(textInput) {
return await this.embedder.embedTextInput(textInput);
}
async embedChunks(textChunks = []) {
return await this.embedder.embedChunks(textChunks);
}
async compressMessages(promptArgs = {}, rawHistory = []) {
const { messageArrayCompressor } = require("../../helpers/chat");
const messageArray = this.constructPrompt(promptArgs);
return await messageArrayCompressor(this, messageArray, rawHistory);
}
}
module.exports = {
TogetherAiLLM,
togetherAiModels,
};