anything-llm/server/utils/AiProviders/huggingface/index.js
Timothy Carambat dd7c4675d3
LLM performance metric tracking ()
* WIP performance metric tracking

* fix: patch UI trying to .toFixed() null metric
Anthropic tracking migraiton
cleanup logs

* Apipie implmentation, not tested

* Cleanup Anthropic notes, Add support for AzureOpenAI tracking

* bedrock token metric tracking

* Cohere support

* feat: improve default stream handler to track for provider who are actually OpenAI compliant in usage reporting
add deepseek support

* feat: Add FireworksAI tracking reporting
fix: improve handler when usage:null is reported (why?)

* Add token reporting for GenericOpenAI

* token reporting for koboldcpp + lmstudio

* lint

* support Groq token tracking

* HF token tracking

* token tracking for togetherai

* LiteLLM token tracking

* linting + Mitral token tracking support

* XAI token metric reporting

* native provider runner

* LocalAI token tracking

* Novita token tracking

* OpenRouter token tracking

* Apipie stream metrics

* textwebgenui token tracking

* perplexity token reporting

* ollama token reporting

* lint

* put back comment

* Rip out LC ollama wrapper and use official library

* patch images with new ollama lib

* improve ollama offline message

* fix image handling in ollama llm provider

* lint

* NVIDIA NIM token tracking

* update openai compatbility responses

* UI/UX show/hide metrics on click for user preference

* update bedrock client

---------

Co-authored-by: shatfield4 <seanhatfield5@gmail.com>
2024-12-16 14:31:17 -08:00

158 lines
4.6 KiB
JavaScript

const { NativeEmbedder } = require("../../EmbeddingEngines/native");
const {
LLMPerformanceMonitor,
} = require("../../helpers/chat/LLMPerformanceMonitor");
const {
handleDefaultStreamResponseV2,
} = require("../../helpers/chat/responses");
class HuggingFaceLLM {
constructor(embedder = null, _modelPreference = null) {
if (!process.env.HUGGING_FACE_LLM_ENDPOINT)
throw new Error("No HuggingFace Inference Endpoint was set.");
if (!process.env.HUGGING_FACE_LLM_API_KEY)
throw new Error("No HuggingFace Access Token was set.");
const { OpenAI: OpenAIApi } = require("openai");
this.openai = new OpenAIApi({
baseURL: `${process.env.HUGGING_FACE_LLM_ENDPOINT}/v1`,
apiKey: process.env.HUGGING_FACE_LLM_API_KEY,
});
// When using HF inference server - the model param is not required so
// we can stub it here. HF Endpoints can only run one model at a time.
// We set to 'tgi' so that endpoint for HF can accept message format
this.model = "tgi";
this.limits = {
history: this.promptWindowLimit() * 0.15,
system: this.promptWindowLimit() * 0.15,
user: this.promptWindowLimit() * 0.7,
};
this.embedder = embedder ?? new NativeEmbedder();
this.defaultTemp = 0.2;
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
streamingEnabled() {
return "streamGetChatCompletion" in this;
}
static promptWindowLimit(_modelName) {
const limit = process.env.HUGGING_FACE_LLM_TOKEN_LIMIT || 4096;
if (!limit || isNaN(Number(limit)))
throw new Error("No HuggingFace token context limit was set.");
return Number(limit);
}
promptWindowLimit() {
const limit = process.env.HUGGING_FACE_LLM_TOKEN_LIMIT || 4096;
if (!limit || isNaN(Number(limit)))
throw new Error("No HuggingFace token context limit was set.");
return Number(limit);
}
async isValidChatCompletionModel(_ = "") {
return true;
}
constructPrompt({
systemPrompt = "",
contextTexts = [],
chatHistory = [],
userPrompt = "",
}) {
// System prompt it not enabled for HF model chats
const prompt = {
role: "user",
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
const assistantResponse = {
role: "assistant",
content: "Okay, I will follow those instructions",
};
return [
prompt,
assistantResponse,
...chatHistory,
{ role: "user", content: userPrompt },
];
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
const result = await LLMPerformanceMonitor.measureAsyncFunction(
this.openai.chat.completions
.create({
model: this.model,
messages,
temperature,
})
.catch((e) => {
throw new Error(e.message);
})
);
if (
!result.output.hasOwnProperty("choices") ||
result.output.choices.length === 0
)
return null;
return {
textResponse: result.output.choices[0].message.content,
metrics: {
prompt_tokens: result.output.usage?.prompt_tokens || 0,
completion_tokens: result.output.usage?.completion_tokens || 0,
total_tokens: result.output.usage?.total_tokens || 0,
outputTps:
(result.output.usage?.completion_tokens || 0) / result.duration,
duration: result.duration,
},
};
}
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
const measuredStreamRequest = await LLMPerformanceMonitor.measureStream(
this.openai.chat.completions.create({
model: this.model,
stream: true,
messages,
temperature,
}),
messages
);
return measuredStreamRequest;
}
handleStream(response, stream, responseProps) {
return handleDefaultStreamResponseV2(response, stream, responseProps);
}
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
async embedTextInput(textInput) {
return await this.embedder.embedTextInput(textInput);
}
async embedChunks(textChunks = []) {
return await this.embedder.embedChunks(textChunks);
}
async compressMessages(promptArgs = {}, rawHistory = []) {
const { messageArrayCompressor } = require("../../helpers/chat");
const messageArray = this.constructPrompt(promptArgs);
return await messageArrayCompressor(this, messageArray, rawHistory);
}
}
module.exports = {
HuggingFaceLLM,
};