anything-llm/server/utils/EmbeddingEngines/lmstudio/index.js
Sean Hatfield 27b07d46b3
Patch bad models endpoint path in LM Studio embedding engine ()
* patch bad models endpoint path in lm studio embedding engine

* convert to OpenAI wrapper compatibility

* add URL force parser/validation for LMStudio connections

* remove comment

---------

Co-authored-by: timothycarambat <rambat1010@gmail.com>
2024-11-13 12:34:42 -08:00

116 lines
3.5 KiB
JavaScript

const { parseLMStudioBasePath } = require("../../AiProviders/lmStudio");
const { maximumChunkLength } = require("../../helpers");
class LMStudioEmbedder {
constructor() {
if (!process.env.EMBEDDING_BASE_PATH)
throw new Error("No embedding base path was set.");
if (!process.env.EMBEDDING_MODEL_PREF)
throw new Error("No embedding model was set.");
const { OpenAI: OpenAIApi } = require("openai");
this.lmstudio = new OpenAIApi({
baseURL: parseLMStudioBasePath(process.env.EMBEDDING_BASE_PATH),
apiKey: null,
});
this.model = process.env.EMBEDDING_MODEL_PREF;
// Limit of how many strings we can process in a single pass to stay with resource or network limits
this.maxConcurrentChunks = 1;
this.embeddingMaxChunkLength = maximumChunkLength();
}
log(text, ...args) {
console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args);
}
async #isAlive() {
return await this.lmstudio.models
.list()
.then((res) => res?.data?.length > 0)
.catch((e) => {
this.log(e.message);
return false;
});
}
async embedTextInput(textInput) {
const result = await this.embedChunks(
Array.isArray(textInput) ? textInput : [textInput]
);
return result?.[0] || [];
}
async embedChunks(textChunks = []) {
if (!(await this.#isAlive()))
throw new Error(
`LMStudio service could not be reached. Is LMStudio running?`
);
this.log(
`Embedding ${textChunks.length} chunks of text with ${this.model}.`
);
// LMStudio will drop all queued requests now? So if there are many going on
// we need to do them sequentially or else only the first resolves and the others
// get dropped or go unanswered >:(
let results = [];
let hasError = false;
for (const chunk of textChunks) {
if (hasError) break; // If an error occurred don't continue and exit early.
results.push(
await this.lmstudio.embeddings
.create({
model: this.model,
input: chunk,
})
.then((result) => {
const embedding = result.data?.[0]?.embedding;
if (!Array.isArray(embedding) || !embedding.length)
throw {
type: "EMPTY_ARR",
message: "The embedding was empty from LMStudio",
};
console.log(`Embedding length: ${embedding.length}`);
return { data: embedding, error: null };
})
.catch((e) => {
e.type =
e?.response?.data?.error?.code ||
e?.response?.status ||
"failed_to_embed";
e.message = e?.response?.data?.error?.message || e.message;
hasError = true;
return { data: [], error: e };
})
);
}
// Accumulate errors from embedding.
// If any are present throw an abort error.
const errors = results
.filter((res) => !!res.error)
.map((res) => res.error)
.flat();
if (errors.length > 0) {
let uniqueErrors = new Set();
console.log(errors);
errors.map((error) =>
uniqueErrors.add(`[${error.type}]: ${error.message}`)
);
if (errors.length > 0)
throw new Error(
`LMStudio Failed to embed: ${Array.from(uniqueErrors).join(", ")}`
);
}
const data = results.map((res) => res?.data || []);
return data.length > 0 ? data : null;
}
}
module.exports = {
LMStudioEmbedder,
};