anything-llm/server/utils/helpers/chat/responses.js
Timothy Carambat c4f75feb08
Support historical message image inputs/attachments for n+1 queries ()
* Support historical message image inputs/attachments for n+1 queries

* patch gemini

* OpenRouter vision support cleanup

* xai vision history support

* Mistral logging

---------

Co-authored-by: shatfield4 <seanhatfield5@gmail.com>
2025-01-16 13:49:06 -08:00

265 lines
9.1 KiB
JavaScript

const { v4: uuidv4 } = require("uuid");
const moment = require("moment");
function clientAbortedHandler(resolve, fullText) {
console.log(
"\x1b[43m\x1b[34m[STREAM ABORTED]\x1b[0m Client requested to abort stream. Exiting LLM stream handler early."
);
resolve(fullText);
return;
}
/**
* Handles the default stream response for a chat.
* @param {import("express").Response} response
* @param {import('./LLMPerformanceMonitor').MonitoredStream} stream
* @param {Object} responseProps
* @returns {Promise<string>}
*/
function handleDefaultStreamResponseV2(response, stream, responseProps) {
const { uuid = uuidv4(), sources = [] } = responseProps;
// Why are we doing this?
// OpenAI do enable the usage metrics in the stream response but:
// 1. This parameter is not available in our current API version (TODO: update)
// 2. The usage metrics are not available in _every_ provider that uses this function
// 3. We need to track the usage metrics for every provider that uses this function - not just OpenAI
// Other keys are added by the LLMPerformanceMonitor.measureStream method
let hasUsageMetrics = false;
let usage = {
// prompt_tokens can be in this object if the provider supports it - otherwise we manually count it
// When the stream is created in the LLMProviders `streamGetChatCompletion` `LLMPerformanceMonitor.measureStream` call.
completion_tokens: 0,
};
return new Promise(async (resolve) => {
let fullText = "";
// Establish listener to early-abort a streaming response
// in case things go sideways or the user does not like the response.
// We preserve the generated text but continue as if chat was completed
// to preserve previously generated content.
const handleAbort = () => {
stream?.endMeasurement(usage);
clientAbortedHandler(resolve, fullText);
};
response.on("close", handleAbort);
// Now handle the chunks from the streamed response and append to fullText.
try {
for await (const chunk of stream) {
const message = chunk?.choices?.[0];
const token = message?.delta?.content;
// If we see usage metrics in the chunk, we can use them directly
// instead of estimating them, but we only want to assign values if
// the response object is the exact same key:value pair we expect.
if (
chunk.hasOwnProperty("usage") && // exists
!!chunk.usage && // is not null
Object.values(chunk.usage).length > 0 // has values
) {
if (chunk.usage.hasOwnProperty("prompt_tokens")) {
usage.prompt_tokens = Number(chunk.usage.prompt_tokens);
}
if (chunk.usage.hasOwnProperty("completion_tokens")) {
hasUsageMetrics = true; // to stop estimating counter
usage.completion_tokens = Number(chunk.usage.completion_tokens);
}
}
if (token) {
fullText += token;
// If we never saw a usage metric, we can estimate them by number of completion chunks
if (!hasUsageMetrics) usage.completion_tokens++;
writeResponseChunk(response, {
uuid,
sources: [],
type: "textResponseChunk",
textResponse: token,
close: false,
error: false,
});
}
// LocalAi returns '' and others return null on chunks - the last chunk is not "" or null.
// Either way, the key `finish_reason` must be present to determine ending chunk.
if (
message?.hasOwnProperty("finish_reason") && // Got valid message and it is an object with finish_reason
message.finish_reason !== "" &&
message.finish_reason !== null
) {
writeResponseChunk(response, {
uuid,
sources,
type: "textResponseChunk",
textResponse: "",
close: true,
error: false,
});
response.removeListener("close", handleAbort);
stream?.endMeasurement(usage);
resolve(fullText);
break; // Break streaming when a valid finish_reason is first encountered
}
}
} catch (e) {
console.log(`\x1b[43m\x1b[34m[STREAMING ERROR]\x1b[0m ${e.message}`);
writeResponseChunk(response, {
uuid,
type: "abort",
textResponse: null,
sources: [],
close: true,
error: e.message,
});
stream?.endMeasurement(usage);
resolve(fullText); // Return what we currently have - if anything.
}
});
}
function convertToChatHistory(history = []) {
const formattedHistory = [];
for (const record of history) {
const { prompt, response, createdAt, feedbackScore = null, id } = record;
const data = JSON.parse(response);
// In the event that a bad response was stored - we should skip its entire record
// because it was likely an error and cannot be used in chats and will fail to render on UI.
if (typeof prompt !== "string") {
console.log(
`[convertToChatHistory] ChatHistory #${record.id} prompt property is not a string - skipping record.`
);
continue;
} else if (typeof data.text !== "string") {
console.log(
`[convertToChatHistory] ChatHistory #${record.id} response.text property is not a string - skipping record.`
);
continue;
}
formattedHistory.push([
{
role: "user",
content: prompt,
sentAt: moment(createdAt).unix(),
attachments: data?.attachments ?? [],
chatId: id,
},
{
type: data?.type || "chart",
role: "assistant",
content: data.text,
sources: data.sources || [],
chatId: id,
sentAt: moment(createdAt).unix(),
feedbackScore,
metrics: data?.metrics || {},
},
]);
}
return formattedHistory.flat();
}
/**
* Converts a chat history to a prompt history.
* @param {Object[]} history - The chat history to convert
* @returns {{role: string, content: string, attachments?: import("..").Attachment}[]}
*/
function convertToPromptHistory(history = []) {
const formattedHistory = [];
for (const record of history) {
const { prompt, response } = record;
const data = JSON.parse(response);
// In the event that a bad response was stored - we should skip its entire record
// because it was likely an error and cannot be used in chats and will fail to render on UI.
if (typeof prompt !== "string") {
console.log(
`[convertToPromptHistory] ChatHistory #${record.id} prompt property is not a string - skipping record.`
);
continue;
} else if (typeof data.text !== "string") {
console.log(
`[convertToPromptHistory] ChatHistory #${record.id} response.text property is not a string - skipping record.`
);
continue;
}
formattedHistory.push([
{
role: "user",
content: prompt,
// if there are attachments, add them as a property to the user message so we can reuse them in chat history later if supported by the llm.
...(data?.attachments?.length > 0
? { attachments: data?.attachments }
: {}),
},
{
role: "assistant",
content: data.text,
},
]);
}
return formattedHistory.flat();
}
function writeResponseChunk(response, data) {
response.write(`data: ${JSON.stringify(data)}\n\n`);
return;
}
/**
* Formats the chat history to re-use attachments in the chat history
* that might have existed in the conversation earlier.
* @param {{role:string, content:string, attachments?: Object[]}[]} chatHistory
* @param {function} formatterFunction - The function to format the chat history from the llm provider
* @param {('asProperty'|'spread')} mode - "asProperty" or "spread". Determines how the content is formatted in the message object.
* @returns {object[]}
*/
function formatChatHistory(
chatHistory = [],
formatterFunction,
mode = "asProperty"
) {
return chatHistory.map((historicalMessage) => {
if (
historicalMessage?.role !== "user" || // Only user messages can have attachments
!historicalMessage?.attachments || // If there are no attachments, we can skip this
!historicalMessage.attachments.length // If there is an array but it is empty, we can skip this
)
return historicalMessage;
// Some providers, like Ollama, expect the content to be embedded in the message object.
if (mode === "spread") {
return {
role: historicalMessage.role,
...formatterFunction({
userPrompt: historicalMessage.content,
attachments: historicalMessage.attachments,
}),
};
}
// Most providers expect the content to be a property of the message object formatted like OpenAI models.
return {
role: historicalMessage.role,
content: formatterFunction({
userPrompt: historicalMessage.content,
attachments: historicalMessage.attachments,
}),
};
});
}
module.exports = {
handleDefaultStreamResponseV2,
convertToChatHistory,
convertToPromptHistory,
writeResponseChunk,
clientAbortedHandler,
formatChatHistory,
};