mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2025-03-19 16:42:22 +00:00
* Support historical message image inputs/attachments for n+1 queries * patch gemini * OpenRouter vision support cleanup * xai vision history support * Mistral logging --------- Co-authored-by: shatfield4 <seanhatfield5@gmail.com>
500 lines
16 KiB
JavaScript
500 lines
16 KiB
JavaScript
const fs = require("fs");
|
|
const path = require("path");
|
|
const { NativeEmbedder } = require("../../EmbeddingEngines/native");
|
|
const {
|
|
LLMPerformanceMonitor,
|
|
} = require("../../helpers/chat/LLMPerformanceMonitor");
|
|
const {
|
|
writeResponseChunk,
|
|
clientAbortedHandler,
|
|
formatChatHistory,
|
|
} = require("../../helpers/chat/responses");
|
|
const { MODEL_MAP } = require("../modelMap");
|
|
const { defaultGeminiModels, v1BetaModels } = require("./defaultModels");
|
|
const { safeJsonParse } = require("../../http");
|
|
const cacheFolder = path.resolve(
|
|
process.env.STORAGE_DIR
|
|
? path.resolve(process.env.STORAGE_DIR, "models", "gemini")
|
|
: path.resolve(__dirname, `../../../storage/models/gemini`)
|
|
);
|
|
|
|
class GeminiLLM {
|
|
constructor(embedder = null, modelPreference = null) {
|
|
if (!process.env.GEMINI_API_KEY)
|
|
throw new Error("No Gemini API key was set.");
|
|
|
|
// Docs: https://ai.google.dev/tutorials/node_quickstart
|
|
const { GoogleGenerativeAI } = require("@google/generative-ai");
|
|
const genAI = new GoogleGenerativeAI(process.env.GEMINI_API_KEY);
|
|
this.model =
|
|
modelPreference || process.env.GEMINI_LLM_MODEL_PREF || "gemini-pro";
|
|
this.gemini = genAI.getGenerativeModel(
|
|
{ model: this.model },
|
|
{
|
|
apiVersion:
|
|
/**
|
|
* There are some models that are only available in the v1beta API
|
|
* and some models that are only available in the v1 API
|
|
* generally, v1beta models have `exp` in the name, but not always
|
|
* so we check for both against a static list as well.
|
|
* @see {v1BetaModels}
|
|
*/
|
|
this.model.includes("exp") || v1BetaModels.includes(this.model)
|
|
? "v1beta"
|
|
: "v1",
|
|
}
|
|
);
|
|
this.limits = {
|
|
history: this.promptWindowLimit() * 0.15,
|
|
system: this.promptWindowLimit() * 0.15,
|
|
user: this.promptWindowLimit() * 0.7,
|
|
};
|
|
|
|
this.embedder = embedder ?? new NativeEmbedder();
|
|
this.defaultTemp = 0.7; // not used for Gemini
|
|
this.safetyThreshold = this.#fetchSafetyThreshold();
|
|
|
|
if (!fs.existsSync(cacheFolder))
|
|
fs.mkdirSync(cacheFolder, { recursive: true });
|
|
this.cacheModelPath = path.resolve(cacheFolder, "models.json");
|
|
this.cacheAtPath = path.resolve(cacheFolder, ".cached_at");
|
|
this.#log(
|
|
`Initialized with model: ${this.model} (${this.promptWindowLimit()})`
|
|
);
|
|
}
|
|
|
|
#log(text, ...args) {
|
|
console.log(`\x1b[32m[GeminiLLM]\x1b[0m ${text}`, ...args);
|
|
}
|
|
|
|
// This checks if the .cached_at file has a timestamp that is more than 1Week (in millis)
|
|
// from the current date. If it is, then we will refetch the API so that all the models are up
|
|
// to date.
|
|
static cacheIsStale() {
|
|
const MAX_STALE = 6.048e8; // 1 Week in MS
|
|
if (!fs.existsSync(path.resolve(cacheFolder, ".cached_at"))) return true;
|
|
const now = Number(new Date());
|
|
const timestampMs = Number(
|
|
fs.readFileSync(path.resolve(cacheFolder, ".cached_at"))
|
|
);
|
|
return now - timestampMs > MAX_STALE;
|
|
}
|
|
|
|
#appendContext(contextTexts = []) {
|
|
if (!contextTexts || !contextTexts.length) return "";
|
|
return (
|
|
"\nContext:\n" +
|
|
contextTexts
|
|
.map((text, i) => {
|
|
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
|
|
})
|
|
.join("")
|
|
);
|
|
}
|
|
|
|
// BLOCK_NONE can be a special candidate for some fields
|
|
// https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/configure-safety-attributes#how_to_remove_automated_response_blocking_for_select_safety_attributes
|
|
// so if you are wondering why BLOCK_NONE still failed, the link above will explain why.
|
|
#fetchSafetyThreshold() {
|
|
const threshold =
|
|
process.env.GEMINI_SAFETY_SETTING ?? "BLOCK_MEDIUM_AND_ABOVE";
|
|
const safetyThresholds = [
|
|
"BLOCK_NONE",
|
|
"BLOCK_ONLY_HIGH",
|
|
"BLOCK_MEDIUM_AND_ABOVE",
|
|
"BLOCK_LOW_AND_ABOVE",
|
|
];
|
|
return safetyThresholds.includes(threshold)
|
|
? threshold
|
|
: "BLOCK_MEDIUM_AND_ABOVE";
|
|
}
|
|
|
|
#safetySettings() {
|
|
return [
|
|
{
|
|
category: "HARM_CATEGORY_HATE_SPEECH",
|
|
threshold: this.safetyThreshold,
|
|
},
|
|
{
|
|
category: "HARM_CATEGORY_SEXUALLY_EXPLICIT",
|
|
threshold: this.safetyThreshold,
|
|
},
|
|
{ category: "HARM_CATEGORY_HARASSMENT", threshold: this.safetyThreshold },
|
|
{
|
|
category: "HARM_CATEGORY_DANGEROUS_CONTENT",
|
|
threshold: this.safetyThreshold,
|
|
},
|
|
];
|
|
}
|
|
|
|
streamingEnabled() {
|
|
return "streamGetChatCompletion" in this;
|
|
}
|
|
|
|
static promptWindowLimit(modelName) {
|
|
try {
|
|
const cacheModelPath = path.resolve(cacheFolder, "models.json");
|
|
if (!fs.existsSync(cacheModelPath))
|
|
return MODEL_MAP.gemini[modelName] ?? 30_720;
|
|
|
|
const models = safeJsonParse(fs.readFileSync(cacheModelPath));
|
|
const model = models.find((model) => model.id === modelName);
|
|
if (!model)
|
|
throw new Error(
|
|
"Model not found in cache - falling back to default model."
|
|
);
|
|
return model.contextWindow;
|
|
} catch (e) {
|
|
console.error(`GeminiLLM:promptWindowLimit`, e.message);
|
|
return MODEL_MAP.gemini[modelName] ?? 30_720;
|
|
}
|
|
}
|
|
|
|
promptWindowLimit() {
|
|
try {
|
|
if (!fs.existsSync(this.cacheModelPath))
|
|
return MODEL_MAP.gemini[this.model] ?? 30_720;
|
|
|
|
const models = safeJsonParse(fs.readFileSync(this.cacheModelPath));
|
|
const model = models.find((model) => model.id === this.model);
|
|
if (!model)
|
|
throw new Error(
|
|
"Model not found in cache - falling back to default model."
|
|
);
|
|
return model.contextWindow;
|
|
} catch (e) {
|
|
console.error(`GeminiLLM:promptWindowLimit`, e.message);
|
|
return MODEL_MAP.gemini[this.model] ?? 30_720;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Fetches Gemini models from the Google Generative AI API
|
|
* @param {string} apiKey - The API key to use for the request
|
|
* @param {number} limit - The maximum number of models to fetch
|
|
* @param {string} pageToken - The page token to use for pagination
|
|
* @returns {Promise<[{id: string, name: string, contextWindow: number, experimental: boolean}]>} A promise that resolves to an array of Gemini models
|
|
*/
|
|
static async fetchModels(apiKey, limit = 1_000, pageToken = null) {
|
|
if (!apiKey) return [];
|
|
if (fs.existsSync(cacheFolder) && !this.cacheIsStale()) {
|
|
console.log(
|
|
`\x1b[32m[GeminiLLM]\x1b[0m Using cached models API response.`
|
|
);
|
|
return safeJsonParse(
|
|
fs.readFileSync(path.resolve(cacheFolder, "models.json"))
|
|
);
|
|
}
|
|
|
|
const url = new URL(
|
|
"https://generativelanguage.googleapis.com/v1beta/models"
|
|
);
|
|
url.searchParams.set("pageSize", limit);
|
|
url.searchParams.set("key", apiKey);
|
|
if (pageToken) url.searchParams.set("pageToken", pageToken);
|
|
let success = false;
|
|
|
|
const models = await fetch(url.toString(), {
|
|
method: "GET",
|
|
headers: { "Content-Type": "application/json" },
|
|
})
|
|
.then((res) => res.json())
|
|
.then((data) => {
|
|
if (data.error) throw new Error(data.error.message);
|
|
return data.models ?? [];
|
|
})
|
|
.then((models) => {
|
|
success = true;
|
|
return models
|
|
.filter(
|
|
(model) => !model.displayName.toLowerCase().includes("tuning")
|
|
)
|
|
.filter((model) =>
|
|
model.supportedGenerationMethods.includes("generateContent")
|
|
) // Only generateContent is supported
|
|
.map((model) => {
|
|
return {
|
|
id: model.name.split("/").pop(),
|
|
name: model.displayName,
|
|
contextWindow: model.inputTokenLimit,
|
|
experimental: model.name.includes("exp"),
|
|
};
|
|
});
|
|
})
|
|
.catch((e) => {
|
|
console.error(`Gemini:getGeminiModels`, e.message);
|
|
success = false;
|
|
return defaultGeminiModels;
|
|
});
|
|
|
|
if (success) {
|
|
console.log(
|
|
`\x1b[32m[GeminiLLM]\x1b[0m Writing cached models API response to disk.`
|
|
);
|
|
if (!fs.existsSync(cacheFolder))
|
|
fs.mkdirSync(cacheFolder, { recursive: true });
|
|
fs.writeFileSync(
|
|
path.resolve(cacheFolder, "models.json"),
|
|
JSON.stringify(models)
|
|
);
|
|
fs.writeFileSync(
|
|
path.resolve(cacheFolder, ".cached_at"),
|
|
new Date().getTime().toString()
|
|
);
|
|
}
|
|
return models;
|
|
}
|
|
|
|
/**
|
|
* Checks if a model is valid for chat completion (unused)
|
|
* @deprecated
|
|
* @param {string} modelName - The name of the model to check
|
|
* @returns {Promise<boolean>} A promise that resolves to a boolean indicating if the model is valid
|
|
*/
|
|
async isValidChatCompletionModel(modelName = "") {
|
|
const models = await this.fetchModels(process.env.GEMINI_API_KEY);
|
|
return models.some((model) => model.id === modelName);
|
|
}
|
|
|
|
/**
|
|
* Generates appropriate content array for a message + attachments.
|
|
* @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}}
|
|
* @returns {string|object[]}
|
|
*/
|
|
#generateContent({ userPrompt, attachments = [] }) {
|
|
if (!attachments.length) {
|
|
return userPrompt;
|
|
}
|
|
|
|
const content = [{ text: userPrompt }];
|
|
for (let attachment of attachments) {
|
|
content.push({
|
|
inlineData: {
|
|
data: attachment.contentString.split("base64,")[1],
|
|
mimeType: attachment.mime,
|
|
},
|
|
});
|
|
}
|
|
return content.flat();
|
|
}
|
|
|
|
constructPrompt({
|
|
systemPrompt = "",
|
|
contextTexts = [],
|
|
chatHistory = [],
|
|
userPrompt = "",
|
|
attachments = [],
|
|
}) {
|
|
const prompt = {
|
|
role: "system",
|
|
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
|
|
};
|
|
return [
|
|
prompt,
|
|
{ role: "assistant", content: "Okay." },
|
|
...formatChatHistory(chatHistory, this.#generateContent),
|
|
{
|
|
role: "USER_PROMPT",
|
|
content: this.#generateContent({ userPrompt, attachments }),
|
|
},
|
|
];
|
|
}
|
|
|
|
// This will take an OpenAi format message array and only pluck valid roles from it.
|
|
formatMessages(messages = []) {
|
|
// Gemini roles are either user || model.
|
|
// and all "content" is relabeled to "parts"
|
|
const allMessages = messages
|
|
.map((message) => {
|
|
if (message.role === "system")
|
|
return { role: "user", parts: [{ text: message.content }] };
|
|
|
|
if (message.role === "user") {
|
|
// If the content is an array - then we have already formatted the context so return it directly.
|
|
if (Array.isArray(message.content))
|
|
return { role: "user", parts: message.content };
|
|
|
|
// Otherwise, this was a regular user message with no attachments
|
|
// so we need to format it for Gemini
|
|
return { role: "user", parts: [{ text: message.content }] };
|
|
}
|
|
|
|
if (message.role === "assistant")
|
|
return { role: "model", parts: [{ text: message.content }] };
|
|
return null;
|
|
})
|
|
.filter((msg) => !!msg);
|
|
|
|
// Specifically, Google cannot have the last sent message be from a user with no assistant reply
|
|
// otherwise it will crash. So if the last item is from the user, it was not completed so pop it off
|
|
// the history.
|
|
if (
|
|
allMessages.length > 0 &&
|
|
allMessages[allMessages.length - 1].role === "user"
|
|
)
|
|
allMessages.pop();
|
|
|
|
// Validate that after every user message, there is a model message
|
|
// sometimes when using gemini we try to compress messages in order to retain as
|
|
// much context as possible but this may mess up the order of the messages that the gemini model expects
|
|
// we do this check to work around the edge case where 2 user prompts may be next to each other, in the message array
|
|
for (let i = 0; i < allMessages.length; i++) {
|
|
if (
|
|
allMessages[i].role === "user" &&
|
|
i < allMessages.length - 1 &&
|
|
allMessages[i + 1].role !== "model"
|
|
) {
|
|
allMessages.splice(i + 1, 0, {
|
|
role: "model",
|
|
parts: [{ text: "Okay." }],
|
|
});
|
|
}
|
|
}
|
|
|
|
return allMessages;
|
|
}
|
|
|
|
async getChatCompletion(messages = [], _opts = {}) {
|
|
const prompt = messages.find(
|
|
(chat) => chat.role === "USER_PROMPT"
|
|
)?.content;
|
|
const chatThread = this.gemini.startChat({
|
|
history: this.formatMessages(messages),
|
|
safetySettings: this.#safetySettings(),
|
|
});
|
|
|
|
const { output: result, duration } =
|
|
await LLMPerformanceMonitor.measureAsyncFunction(
|
|
chatThread.sendMessage(prompt)
|
|
);
|
|
const responseText = result.response.text();
|
|
if (!responseText) throw new Error("Gemini: No response could be parsed.");
|
|
|
|
const promptTokens = LLMPerformanceMonitor.countTokens(messages);
|
|
const completionTokens = LLMPerformanceMonitor.countTokens([
|
|
{ content: responseText },
|
|
]);
|
|
|
|
return {
|
|
textResponse: responseText,
|
|
metrics: {
|
|
prompt_tokens: promptTokens,
|
|
completion_tokens: completionTokens,
|
|
total_tokens: promptTokens + completionTokens,
|
|
outputTps: (promptTokens + completionTokens) / duration,
|
|
duration,
|
|
},
|
|
};
|
|
}
|
|
|
|
async streamGetChatCompletion(messages = [], _opts = {}) {
|
|
const prompt = messages.find(
|
|
(chat) => chat.role === "USER_PROMPT"
|
|
)?.content;
|
|
const chatThread = this.gemini.startChat({
|
|
history: this.formatMessages(messages),
|
|
safetySettings: this.#safetySettings(),
|
|
});
|
|
const responseStream = await LLMPerformanceMonitor.measureStream(
|
|
(await chatThread.sendMessageStream(prompt)).stream,
|
|
messages
|
|
);
|
|
|
|
if (!responseStream)
|
|
throw new Error("Could not stream response stream from Gemini.");
|
|
return responseStream;
|
|
}
|
|
|
|
async compressMessages(promptArgs = {}, rawHistory = []) {
|
|
const { messageArrayCompressor } = require("../../helpers/chat");
|
|
const messageArray = this.constructPrompt(promptArgs);
|
|
return await messageArrayCompressor(this, messageArray, rawHistory);
|
|
}
|
|
|
|
handleStream(response, stream, responseProps) {
|
|
const { uuid = uuidv4(), sources = [] } = responseProps;
|
|
// Usage is not available for Gemini streams
|
|
// so we need to calculate the completion tokens manually
|
|
// because 1 chunk != 1 token in gemini responses and it buffers
|
|
// many tokens before sending them to the client as a "chunk"
|
|
|
|
return new Promise(async (resolve) => {
|
|
let fullText = "";
|
|
|
|
// Establish listener to early-abort a streaming response
|
|
// in case things go sideways or the user does not like the response.
|
|
// We preserve the generated text but continue as if chat was completed
|
|
// to preserve previously generated content.
|
|
const handleAbort = () => {
|
|
stream?.endMeasurement({
|
|
completion_tokens: LLMPerformanceMonitor.countTokens([
|
|
{ content: fullText },
|
|
]),
|
|
});
|
|
clientAbortedHandler(resolve, fullText);
|
|
};
|
|
response.on("close", handleAbort);
|
|
|
|
for await (const chunk of stream) {
|
|
let chunkText;
|
|
try {
|
|
// Due to content sensitivity we cannot always get the function .text();
|
|
// https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/configure-safety-attributes#gemini-TASK-samples-nodejs
|
|
// and it is not possible to unblock or disable this safety protocol without being allowlisted by Google.
|
|
chunkText = chunk.text();
|
|
} catch (e) {
|
|
chunkText = e.message;
|
|
writeResponseChunk(response, {
|
|
uuid,
|
|
sources: [],
|
|
type: "abort",
|
|
textResponse: null,
|
|
close: true,
|
|
error: e.message,
|
|
});
|
|
stream?.endMeasurement({ completion_tokens: 0 });
|
|
resolve(e.message);
|
|
return;
|
|
}
|
|
|
|
fullText += chunkText;
|
|
writeResponseChunk(response, {
|
|
uuid,
|
|
sources: [],
|
|
type: "textResponseChunk",
|
|
textResponse: chunk.text(),
|
|
close: false,
|
|
error: false,
|
|
});
|
|
}
|
|
|
|
writeResponseChunk(response, {
|
|
uuid,
|
|
sources,
|
|
type: "textResponseChunk",
|
|
textResponse: "",
|
|
close: true,
|
|
error: false,
|
|
});
|
|
response.removeListener("close", handleAbort);
|
|
stream?.endMeasurement({
|
|
completion_tokens: LLMPerformanceMonitor.countTokens([
|
|
{ content: fullText },
|
|
]),
|
|
});
|
|
resolve(fullText);
|
|
});
|
|
}
|
|
|
|
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
|
|
async embedTextInput(textInput) {
|
|
return await this.embedder.embedTextInput(textInput);
|
|
}
|
|
async embedChunks(textChunks = []) {
|
|
return await this.embedder.embedChunks(textChunks);
|
|
}
|
|
}
|
|
|
|
module.exports = {
|
|
GeminiLLM,
|
|
};
|