anything-llm/server/utils/AiProviders/xai/index.js
Timothy Carambat c4f75feb08
Support historical message image inputs/attachments for n+1 queries ()
* Support historical message image inputs/attachments for n+1 queries

* patch gemini

* OpenRouter vision support cleanup

* xai vision history support

* Mistral logging

---------

Co-authored-by: shatfield4 <seanhatfield5@gmail.com>
2025-01-16 13:49:06 -08:00

192 lines
5.2 KiB
JavaScript

const { NativeEmbedder } = require("../../EmbeddingEngines/native");
const {
LLMPerformanceMonitor,
} = require("../../helpers/chat/LLMPerformanceMonitor");
const {
handleDefaultStreamResponseV2,
formatChatHistory,
} = require("../../helpers/chat/responses");
const { MODEL_MAP } = require("../modelMap");
class XAiLLM {
constructor(embedder = null, modelPreference = null) {
if (!process.env.XAI_LLM_API_KEY)
throw new Error("No xAI API key was set.");
const { OpenAI: OpenAIApi } = require("openai");
this.openai = new OpenAIApi({
baseURL: "https://api.x.ai/v1",
apiKey: process.env.XAI_LLM_API_KEY,
});
this.model =
modelPreference || process.env.XAI_LLM_MODEL_PREF || "grok-beta";
this.limits = {
history: this.promptWindowLimit() * 0.15,
system: this.promptWindowLimit() * 0.15,
user: this.promptWindowLimit() * 0.7,
};
this.embedder = embedder ?? new NativeEmbedder();
this.defaultTemp = 0.7;
this.log("Initialized with model:", this.model);
}
log(text, ...args) {
console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args);
}
#appendContext(contextTexts = []) {
if (!contextTexts || !contextTexts.length) return "";
return (
"\nContext:\n" +
contextTexts
.map((text, i) => {
return `[CONTEXT ${i}]:\n${text}\n[END CONTEXT ${i}]\n\n`;
})
.join("")
);
}
streamingEnabled() {
return "streamGetChatCompletion" in this;
}
static promptWindowLimit(modelName) {
return MODEL_MAP.xai[modelName] ?? 131_072;
}
promptWindowLimit() {
return MODEL_MAP.xai[this.model] ?? 131_072;
}
isValidChatCompletionModel(_modelName = "") {
return true;
}
/**
* Generates appropriate content array for a message + attachments.
* @param {{userPrompt:string, attachments: import("../../helpers").Attachment[]}}
* @returns {string|object[]}
*/
#generateContent({ userPrompt, attachments = [] }) {
if (!attachments.length) {
return userPrompt;
}
const content = [{ type: "text", text: userPrompt }];
for (let attachment of attachments) {
content.push({
type: "image_url",
image_url: {
url: attachment.contentString,
detail: "high",
},
});
}
return content.flat();
}
/**
* Construct the user prompt for this model.
* @param {{attachments: import("../../helpers").Attachment[]}} param0
* @returns
*/
constructPrompt({
systemPrompt = "",
contextTexts = [],
chatHistory = [],
userPrompt = "",
attachments = [], // This is the specific attachment for only this prompt
}) {
const prompt = {
role: "system",
content: `${systemPrompt}${this.#appendContext(contextTexts)}`,
};
return [
prompt,
...formatChatHistory(chatHistory, this.#generateContent),
{
role: "user",
content: this.#generateContent({ userPrompt, attachments }),
},
];
}
async getChatCompletion(messages = null, { temperature = 0.7 }) {
if (!this.isValidChatCompletionModel(this.model))
throw new Error(
`xAI chat: ${this.model} is not valid for chat completion!`
);
const result = await LLMPerformanceMonitor.measureAsyncFunction(
this.openai.chat.completions
.create({
model: this.model,
messages,
temperature,
})
.catch((e) => {
throw new Error(e.message);
})
);
if (
!result.output.hasOwnProperty("choices") ||
result.output.choices.length === 0
)
return null;
return {
textResponse: result.output.choices[0].message.content,
metrics: {
prompt_tokens: result.output.usage.prompt_tokens || 0,
completion_tokens: result.output.usage.completion_tokens || 0,
total_tokens: result.output.usage.total_tokens || 0,
outputTps: result.output.usage.completion_tokens / result.duration,
duration: result.duration,
},
};
}
async streamGetChatCompletion(messages = null, { temperature = 0.7 }) {
if (!this.isValidChatCompletionModel(this.model))
throw new Error(
`xAI chat: ${this.model} is not valid for chat completion!`
);
const measuredStreamRequest = await LLMPerformanceMonitor.measureStream(
this.openai.chat.completions.create({
model: this.model,
stream: true,
messages,
temperature,
}),
messages,
false
);
return measuredStreamRequest;
}
handleStream(response, stream, responseProps) {
return handleDefaultStreamResponseV2(response, stream, responseProps);
}
// Simple wrapper for dynamic embedder & normalize interface for all LLM implementations
async embedTextInput(textInput) {
return await this.embedder.embedTextInput(textInput);
}
async embedChunks(textChunks = []) {
return await this.embedder.embedChunks(textChunks);
}
async compressMessages(promptArgs = {}, rawHistory = []) {
const { messageArrayCompressor } = require("../../helpers/chat");
const messageArray = this.constructPrompt(promptArgs);
return await messageArrayCompressor(this, messageArray, rawHistory);
}
}
module.exports = {
XAiLLM,
};