anything-llm/server/utils/vectorDbProviders/lance/index.js
Sean Hatfield f8c72786df
Fix similarity score bug in lance/chroma dbs ()
* fix similarity score bug in lance/chroma dbs

* batch lower bound case

---------

Co-authored-by: timothycarambat <rambat1010@gmail.com>
2025-01-17 18:27:54 -08:00

478 lines
16 KiB
JavaScript

const lancedb = require("@lancedb/lancedb");
const { toChunks, getEmbeddingEngineSelection } = require("../../helpers");
const { TextSplitter } = require("../../TextSplitter");
const { SystemSettings } = require("../../../models/systemSettings");
const { storeVectorResult, cachedVectorInformation } = require("../../files");
const { v4: uuidv4 } = require("uuid");
const { sourceIdentifier } = require("../../chats");
const { NativeEmbeddingReranker } = require("../../EmbeddingRerankers/native");
/**
* LancedDB Client connection object
* @typedef {import('@lancedb/lancedb').Connection} LanceClient
*/
const LanceDb = {
uri: `${
!!process.env.STORAGE_DIR ? `${process.env.STORAGE_DIR}/` : "./storage/"
}lancedb`,
name: "LanceDb",
/** @returns {Promise<{client: LanceClient}>} */
connect: async function () {
if (process.env.VECTOR_DB !== "lancedb")
throw new Error("LanceDB::Invalid ENV settings");
const client = await lancedb.connect(this.uri);
return { client };
},
distanceToSimilarity: function (distance = null) {
if (distance === null || typeof distance !== "number") return 0.0;
if (distance >= 1.0) return 1;
if (distance < 0) return 1 - Math.abs(distance);
return 1 - distance;
},
heartbeat: async function () {
await this.connect();
return { heartbeat: Number(new Date()) };
},
tables: async function () {
const { client } = await this.connect();
return await client.tableNames();
},
totalVectors: async function () {
const { client } = await this.connect();
const tables = await client.tableNames();
let count = 0;
for (const tableName of tables) {
const table = await client.openTable(tableName);
count += await table.countRows();
}
return count;
},
namespaceCount: async function (_namespace = null) {
const { client } = await this.connect();
const exists = await this.namespaceExists(client, _namespace);
if (!exists) return 0;
const table = await client.openTable(_namespace);
return (await table.countRows()) || 0;
},
/**
* Performs a SimilaritySearch + Reranking on a namespace.
* @param {Object} params - The parameters for the rerankedSimilarityResponse.
* @param {Object} params.client - The vectorDB client.
* @param {string} params.namespace - The namespace to search in.
* @param {string} params.query - The query to search for (plain text).
* @param {number[]} params.queryVector - The vector of the query.
* @param {number} params.similarityThreshold - The threshold for similarity.
* @param {number} params.topN - the number of results to return from this process.
* @param {string[]} params.filterIdentifiers - The identifiers of the documents to filter out.
* @returns
*/
rerankedSimilarityResponse: async function ({
client,
namespace,
query,
queryVector,
topN = 4,
similarityThreshold = 0.25,
filterIdentifiers = [],
}) {
const reranker = new NativeEmbeddingReranker();
const collection = await client.openTable(namespace);
const totalEmbeddings = await this.namespaceCount(namespace);
const result = {
contextTexts: [],
sourceDocuments: [],
scores: [],
};
/**
* For reranking, we want to work with a larger number of results than the topN.
* This is because the reranker can only rerank the results it it given and we dont auto-expand the results.
* We want to give the reranker a larger number of results to work with.
*
* However, we cannot make this boundless as reranking is expensive and time consuming.
* So we limit the number of results to a maximum of 50 and a minimum of 10.
* This is a good balance between the number of results to rerank and the cost of reranking
* and ensures workspaces with 10K embeddings will still rerank within a reasonable timeframe on base level hardware.
*
* Benchmarks:
* On Intel Mac: 2.6 GHz 6-Core Intel Core i7 - 20 docs reranked in ~5.2 sec
*/
const searchLimit = Math.max(
10,
Math.min(50, Math.ceil(totalEmbeddings * 0.1))
);
const vectorSearchResults = await collection
.vectorSearch(queryVector)
.distanceType("cosine")
.limit(searchLimit)
.toArray();
await reranker
.rerank(query, vectorSearchResults, { topK: topN })
.then((rerankResults) => {
rerankResults.forEach((item) => {
if (this.distanceToSimilarity(item._distance) < similarityThreshold)
return;
const { vector: _, ...rest } = item;
if (filterIdentifiers.includes(sourceIdentifier(rest))) {
console.log(
"LanceDB: A source was filtered from context as it's parent document is pinned."
);
return;
}
const score =
item?.rerank_score || this.distanceToSimilarity(item._distance);
result.contextTexts.push(rest.text);
result.sourceDocuments.push({
...rest,
score,
});
result.scores.push(score);
});
})
.catch((e) => {
console.error(e);
console.error("LanceDB::rerankedSimilarityResponse", e.message);
});
return result;
},
/**
* Performs a SimilaritySearch on a give LanceDB namespace.
* @param {Object} params
* @param {LanceClient} params.client
* @param {string} params.namespace
* @param {number[]} params.queryVector
* @param {number} params.similarityThreshold
* @param {number} params.topN
* @param {string[]} params.filterIdentifiers
* @returns
*/
similarityResponse: async function ({
client,
namespace,
queryVector,
similarityThreshold = 0.25,
topN = 4,
filterIdentifiers = [],
}) {
const collection = await client.openTable(namespace);
const result = {
contextTexts: [],
sourceDocuments: [],
scores: [],
};
const response = await collection
.vectorSearch(queryVector)
.distanceType("cosine")
.limit(topN)
.toArray();
response.forEach((item) => {
if (this.distanceToSimilarity(item._distance) < similarityThreshold)
return;
const { vector: _, ...rest } = item;
if (filterIdentifiers.includes(sourceIdentifier(rest))) {
console.log(
"LanceDB: A source was filtered from context as it's parent document is pinned."
);
return;
}
result.contextTexts.push(rest.text);
result.sourceDocuments.push({
...rest,
score: this.distanceToSimilarity(item._distance),
});
result.scores.push(this.distanceToSimilarity(item._distance));
});
return result;
},
/**
*
* @param {LanceClient} client
* @param {string} namespace
* @returns
*/
namespace: async function (client, namespace = null) {
if (!namespace) throw new Error("No namespace value provided.");
const collection = await client.openTable(namespace).catch(() => false);
if (!collection) return null;
return {
...collection,
};
},
/**
*
* @param {LanceClient} client
* @param {number[]} data
* @param {string} namespace
* @returns
*/
updateOrCreateCollection: async function (client, data = [], namespace) {
const hasNamespace = await this.hasNamespace(namespace);
if (hasNamespace) {
const collection = await client.openTable(namespace);
await collection.add(data);
return true;
}
await client.createTable(namespace, data);
return true;
},
hasNamespace: async function (namespace = null) {
if (!namespace) return false;
const { client } = await this.connect();
const exists = await this.namespaceExists(client, namespace);
return exists;
},
/**
*
* @param {LanceClient} client
* @param {string} namespace
* @returns
*/
namespaceExists: async function (client, namespace = null) {
if (!namespace) throw new Error("No namespace value provided.");
const collections = await client.tableNames();
return collections.includes(namespace);
},
/**
*
* @param {LanceClient} client
* @param {string} namespace
* @returns
*/
deleteVectorsInNamespace: async function (client, namespace = null) {
await client.dropTable(namespace);
return true;
},
deleteDocumentFromNamespace: async function (namespace, docId) {
const { client } = await this.connect();
const exists = await this.namespaceExists(client, namespace);
if (!exists) {
console.error(
`LanceDB:deleteDocumentFromNamespace - namespace ${namespace} does not exist.`
);
return;
}
const { DocumentVectors } = require("../../../models/vectors");
const table = await client.openTable(namespace);
const vectorIds = (await DocumentVectors.where({ docId })).map(
(record) => record.vectorId
);
if (vectorIds.length === 0) return;
await table.delete(`id IN (${vectorIds.map((v) => `'${v}'`).join(",")})`);
return true;
},
addDocumentToNamespace: async function (
namespace,
documentData = {},
fullFilePath = null,
skipCache = false
) {
const { DocumentVectors } = require("../../../models/vectors");
try {
const { pageContent, docId, ...metadata } = documentData;
if (!pageContent || pageContent.length == 0) return false;
console.log("Adding new vectorized document into namespace", namespace);
if (!skipCache) {
const cacheResult = await cachedVectorInformation(fullFilePath);
if (cacheResult.exists) {
const { client } = await this.connect();
const { chunks } = cacheResult;
const documentVectors = [];
const submissions = [];
for (const chunk of chunks) {
chunk.forEach((chunk) => {
const id = uuidv4();
const { id: _id, ...metadata } = chunk.metadata;
documentVectors.push({ docId, vectorId: id });
submissions.push({ id: id, vector: chunk.values, ...metadata });
});
}
await this.updateOrCreateCollection(client, submissions, namespace);
await DocumentVectors.bulkInsert(documentVectors);
return { vectorized: true, error: null };
}
}
// If we are here then we are going to embed and store a novel document.
// We have to do this manually as opposed to using LangChains `xyz.fromDocuments`
// because we then cannot atomically control our namespace to granularly find/remove documents
// from vectordb.
const EmbedderEngine = getEmbeddingEngineSelection();
const textSplitter = new TextSplitter({
chunkSize: TextSplitter.determineMaxChunkSize(
await SystemSettings.getValueOrFallback({
label: "text_splitter_chunk_size",
}),
EmbedderEngine?.embeddingMaxChunkLength
),
chunkOverlap: await SystemSettings.getValueOrFallback(
{ label: "text_splitter_chunk_overlap" },
20
),
chunkHeaderMeta: TextSplitter.buildHeaderMeta(metadata),
});
const textChunks = await textSplitter.splitText(pageContent);
console.log("Chunks created from document:", textChunks.length);
const documentVectors = [];
const vectors = [];
const submissions = [];
const vectorValues = await EmbedderEngine.embedChunks(textChunks);
if (!!vectorValues && vectorValues.length > 0) {
for (const [i, vector] of vectorValues.entries()) {
const vectorRecord = {
id: uuidv4(),
values: vector,
// [DO NOT REMOVE]
// LangChain will be unable to find your text if you embed manually and dont include the `text` key.
// https://github.com/hwchase17/langchainjs/blob/2def486af734c0ca87285a48f1a04c057ab74bdf/langchain/src/vectorstores/pinecone.ts#L64
metadata: { ...metadata, text: textChunks[i] },
};
vectors.push(vectorRecord);
submissions.push({
...vectorRecord.metadata,
id: vectorRecord.id,
vector: vectorRecord.values,
});
documentVectors.push({ docId, vectorId: vectorRecord.id });
}
} else {
throw new Error(
"Could not embed document chunks! This document will not be recorded."
);
}
if (vectors.length > 0) {
const chunks = [];
for (const chunk of toChunks(vectors, 500)) chunks.push(chunk);
console.log("Inserting vectorized chunks into LanceDB collection.");
const { client } = await this.connect();
await this.updateOrCreateCollection(client, submissions, namespace);
await storeVectorResult(chunks, fullFilePath);
}
await DocumentVectors.bulkInsert(documentVectors);
return { vectorized: true, error: null };
} catch (e) {
console.error("addDocumentToNamespace", e.message);
return { vectorized: false, error: e.message };
}
},
performSimilaritySearch: async function ({
namespace = null,
input = "",
LLMConnector = null,
similarityThreshold = 0.25,
topN = 4,
filterIdentifiers = [],
rerank = false,
}) {
if (!namespace || !input || !LLMConnector)
throw new Error("Invalid request to performSimilaritySearch.");
const { client } = await this.connect();
if (!(await this.namespaceExists(client, namespace))) {
return {
contextTexts: [],
sources: [],
message: "Invalid query - no documents found for workspace!",
};
}
const queryVector = await LLMConnector.embedTextInput(input);
const result = rerank
? await this.rerankedSimilarityResponse({
client,
namespace,
query: input,
queryVector,
similarityThreshold,
topN,
filterIdentifiers,
})
: await this.similarityResponse({
client,
namespace,
queryVector,
similarityThreshold,
topN,
filterIdentifiers,
});
const { contextTexts, sourceDocuments } = result;
const sources = sourceDocuments.map((metadata, i) => {
return { metadata: { ...metadata, text: contextTexts[i] } };
});
return {
contextTexts,
sources: this.curateSources(sources),
message: false,
};
},
"namespace-stats": async function (reqBody = {}) {
const { namespace = null } = reqBody;
if (!namespace) throw new Error("namespace required");
const { client } = await this.connect();
if (!(await this.namespaceExists(client, namespace)))
throw new Error("Namespace by that name does not exist.");
const stats = await this.namespace(client, namespace);
return stats
? stats
: { message: "No stats were able to be fetched from DB for namespace" };
},
"delete-namespace": async function (reqBody = {}) {
const { namespace = null } = reqBody;
const { client } = await this.connect();
if (!(await this.namespaceExists(client, namespace)))
throw new Error("Namespace by that name does not exist.");
await this.deleteVectorsInNamespace(client, namespace);
return {
message: `Namespace ${namespace} was deleted.`,
};
},
reset: async function () {
const { client } = await this.connect();
const fs = require("fs");
fs.rm(`${client.uri}`, { recursive: true }, () => null);
return { reset: true };
},
curateSources: function (sources = []) {
const documents = [];
for (const source of sources) {
const { text, vector: _v, _distance: _d, ...rest } = source;
const metadata = rest.hasOwnProperty("metadata") ? rest.metadata : rest;
if (Object.keys(metadata).length > 0) {
documents.push({
...metadata,
...(text ? { text } : {}),
});
}
}
return documents;
},
};
module.exports.LanceDb = LanceDb;