anything-llm/server/utils/EmbeddingEngines/ollama/index.js
Timothy Carambat df8d34d31e
Enable num_ctx to match defined chunk length in ollama embedder ()
* Enable `num_ctx` to match defined chunk length in ollama embedder

* remove console
2025-02-05 15:46:39 -08:00

104 lines
3.6 KiB
JavaScript

const { maximumChunkLength } = require("../../helpers");
const { Ollama } = require("ollama");
class OllamaEmbedder {
constructor() {
if (!process.env.EMBEDDING_BASE_PATH)
throw new Error("No embedding base path was set.");
if (!process.env.EMBEDDING_MODEL_PREF)
throw new Error("No embedding model was set.");
this.basePath = process.env.EMBEDDING_BASE_PATH;
this.model = process.env.EMBEDDING_MODEL_PREF;
// Limit of how many strings we can process in a single pass to stay with resource or network limits
this.maxConcurrentChunks = 1;
this.embeddingMaxChunkLength = maximumChunkLength();
this.client = new Ollama({ host: this.basePath });
this.log(
`initialized with model ${this.model} at ${this.basePath}. num_ctx: ${this.embeddingMaxChunkLength}`
);
}
log(text, ...args) {
console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args);
}
/**
* Checks if the Ollama service is alive by pinging the base path.
* @returns {Promise<boolean>} - A promise that resolves to true if the service is alive, false otherwise.
*/
async #isAlive() {
return await fetch(this.basePath)
.then((res) => res.ok)
.catch((e) => {
this.log(e.message);
return false;
});
}
async embedTextInput(textInput) {
const result = await this.embedChunks(
Array.isArray(textInput) ? textInput : [textInput]
);
return result?.[0] || [];
}
/**
* This function takes an array of text chunks and embeds them using the Ollama API.
* chunks are processed sequentially to avoid overwhelming the API with too many requests
* or running out of resources on the endpoint running the ollama instance.
*
* We will use the num_ctx option to set the maximum context window to the max chunk length defined by the user in the settings
* so that the maximum context window is used and content is not truncated.
*
* We also assume the default keep alive option. This could cause issues with models being unloaded and reloaded
* on load memory machines, but that is simply a user-end issue we cannot control. If the LLM and embedder are
* constantly being loaded and unloaded, the user should use another LLM or Embedder to avoid this issue.
* @param {string[]} textChunks - An array of text chunks to embed.
* @returns {Promise<Array<number[]>>} - A promise that resolves to an array of embeddings.
*/
async embedChunks(textChunks = []) {
if (!(await this.#isAlive()))
throw new Error(
`Ollama service could not be reached. Is Ollama running?`
);
this.log(
`Embedding ${textChunks.length} chunks of text with ${this.model}.`
);
let data = [];
let error = null;
for (const chunk of textChunks) {
try {
const res = await this.client.embeddings({
model: this.model,
prompt: chunk,
options: {
// Always set the num_ctx to the max chunk length defined by the user in the settings
// so that the maximum context window is used and content is not truncated.
num_ctx: this.embeddingMaxChunkLength,
},
});
const { embedding } = res;
if (!Array.isArray(embedding) || embedding.length === 0)
throw new Error("Ollama returned an empty embedding for chunk!");
data.push(embedding);
} catch (err) {
this.log(err.message);
error = err.message;
data = [];
break;
}
}
if (!!error) throw new Error(`Ollama Failed to embed: ${error}`);
return data.length > 0 ? data : null;
}
}
module.exports = {
OllamaEmbedder,
};