mirror of
https://github.com/Mintplex-Labs/anything-llm.git
synced 2025-04-26 14:29:41 +00:00
104 lines
3.6 KiB
JavaScript
104 lines
3.6 KiB
JavaScript
const { maximumChunkLength } = require("../../helpers");
|
|
const { Ollama } = require("ollama");
|
|
|
|
class OllamaEmbedder {
|
|
constructor() {
|
|
if (!process.env.EMBEDDING_BASE_PATH)
|
|
throw new Error("No embedding base path was set.");
|
|
if (!process.env.EMBEDDING_MODEL_PREF)
|
|
throw new Error("No embedding model was set.");
|
|
|
|
this.basePath = process.env.EMBEDDING_BASE_PATH;
|
|
this.model = process.env.EMBEDDING_MODEL_PREF;
|
|
// Limit of how many strings we can process in a single pass to stay with resource or network limits
|
|
this.maxConcurrentChunks = 1;
|
|
this.embeddingMaxChunkLength = maximumChunkLength();
|
|
this.client = new Ollama({ host: this.basePath });
|
|
this.log(
|
|
`initialized with model ${this.model} at ${this.basePath}. num_ctx: ${this.embeddingMaxChunkLength}`
|
|
);
|
|
}
|
|
|
|
log(text, ...args) {
|
|
console.log(`\x1b[36m[${this.constructor.name}]\x1b[0m ${text}`, ...args);
|
|
}
|
|
|
|
/**
|
|
* Checks if the Ollama service is alive by pinging the base path.
|
|
* @returns {Promise<boolean>} - A promise that resolves to true if the service is alive, false otherwise.
|
|
*/
|
|
async #isAlive() {
|
|
return await fetch(this.basePath)
|
|
.then((res) => res.ok)
|
|
.catch((e) => {
|
|
this.log(e.message);
|
|
return false;
|
|
});
|
|
}
|
|
|
|
async embedTextInput(textInput) {
|
|
const result = await this.embedChunks(
|
|
Array.isArray(textInput) ? textInput : [textInput]
|
|
);
|
|
return result?.[0] || [];
|
|
}
|
|
|
|
/**
|
|
* This function takes an array of text chunks and embeds them using the Ollama API.
|
|
* chunks are processed sequentially to avoid overwhelming the API with too many requests
|
|
* or running out of resources on the endpoint running the ollama instance.
|
|
*
|
|
* We will use the num_ctx option to set the maximum context window to the max chunk length defined by the user in the settings
|
|
* so that the maximum context window is used and content is not truncated.
|
|
*
|
|
* We also assume the default keep alive option. This could cause issues with models being unloaded and reloaded
|
|
* on load memory machines, but that is simply a user-end issue we cannot control. If the LLM and embedder are
|
|
* constantly being loaded and unloaded, the user should use another LLM or Embedder to avoid this issue.
|
|
* @param {string[]} textChunks - An array of text chunks to embed.
|
|
* @returns {Promise<Array<number[]>>} - A promise that resolves to an array of embeddings.
|
|
*/
|
|
async embedChunks(textChunks = []) {
|
|
if (!(await this.#isAlive()))
|
|
throw new Error(
|
|
`Ollama service could not be reached. Is Ollama running?`
|
|
);
|
|
this.log(
|
|
`Embedding ${textChunks.length} chunks of text with ${this.model}.`
|
|
);
|
|
|
|
let data = [];
|
|
let error = null;
|
|
|
|
for (const chunk of textChunks) {
|
|
try {
|
|
const res = await this.client.embeddings({
|
|
model: this.model,
|
|
prompt: chunk,
|
|
options: {
|
|
// Always set the num_ctx to the max chunk length defined by the user in the settings
|
|
// so that the maximum context window is used and content is not truncated.
|
|
num_ctx: this.embeddingMaxChunkLength,
|
|
},
|
|
});
|
|
|
|
const { embedding } = res;
|
|
if (!Array.isArray(embedding) || embedding.length === 0)
|
|
throw new Error("Ollama returned an empty embedding for chunk!");
|
|
|
|
data.push(embedding);
|
|
} catch (err) {
|
|
this.log(err.message);
|
|
error = err.message;
|
|
data = [];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!!error) throw new Error(`Ollama Failed to embed: ${error}`);
|
|
return data.length > 0 ? data : null;
|
|
}
|
|
}
|
|
|
|
module.exports = {
|
|
OllamaEmbedder,
|
|
};
|