khoj/tests/test_conversation_utils.py

66 lines
2.8 KiB
Python
Raw Normal View History

from khoj.processor.conversation import utils
from langchain.schema import ChatMessage
import factory
import tiktoken
2023-06-06 04:29:23 +02:00
class ChatMessageFactory(factory.Factory):
class Meta:
model = ChatMessage
2023-06-06 04:29:23 +02:00
content = factory.Faker("paragraph")
role = factory.Faker("name")
class TestTruncateMessage:
max_prompt_size = 4096
2023-06-06 04:29:23 +02:00
model_name = "gpt-3.5-turbo"
encoder = tiktoken.encoding_for_model(model_name)
def test_truncate_message_all_small(self):
chat_messages = ChatMessageFactory.build_batch(500)
tokens = sum([len(self.encoder.encode(message.content)) for message in chat_messages])
prompt = utils.truncate_messages(chat_messages, self.max_prompt_size, self.model_name)
tokens = sum([len(self.encoder.encode(message.content)) for message in prompt])
# The original object has been modified. Verify certain properties
assert len(chat_messages) < 500
assert len(chat_messages) > 1
assert prompt == chat_messages
assert tokens <= self.max_prompt_size
def test_truncate_message_first_large(self):
chat_messages = ChatMessageFactory.build_batch(25)
2023-06-06 04:29:23 +02:00
big_chat_message = ChatMessageFactory.build(content=factory.Faker("paragraph", nb_sentences=1000))
big_chat_message.content = big_chat_message.content + "\n" + "Question?"
copy_big_chat_message = big_chat_message.copy()
chat_messages.insert(0, big_chat_message)
tokens = sum([len(self.encoder.encode(message.content)) for message in chat_messages])
prompt = utils.truncate_messages(chat_messages, self.max_prompt_size, self.model_name)
tokens = sum([len(self.encoder.encode(message.content)) for message in prompt])
# The original object has been modified. Verify certain properties
assert len(chat_messages) == 1
assert prompt[0] != copy_big_chat_message
assert tokens <= self.max_prompt_size
def test_truncate_message_last_large(self):
chat_messages = ChatMessageFactory.build_batch(25)
2023-06-06 04:29:23 +02:00
big_chat_message = ChatMessageFactory.build(content=factory.Faker("paragraph", nb_sentences=1000))
big_chat_message.content = big_chat_message.content + "\n" + "Question?"
copy_big_chat_message = big_chat_message.copy()
2023-06-06 04:29:23 +02:00
chat_messages.append(big_chat_message)
tokens = sum([len(self.encoder.encode(message.content)) for message in chat_messages])
prompt = utils.truncate_messages(chat_messages, self.max_prompt_size, self.model_name)
tokens = sum([len(self.encoder.encode(message.content)) for message in prompt])
# The original object has been modified. Verify certain properties
assert len(chat_messages) < 26
assert len(chat_messages) > 1
assert prompt[0] != copy_big_chat_message
assert tokens <= self.max_prompt_size