khoj/tests/test_helpers.py

84 lines
2.9 KiB
Python
Raw Normal View History

# Standard Packages
import numpy as np
import psutil
from scipy.stats import linregress
import secrets
# External Packages
import pytest
# Internal Packages
from khoj.processor.embeddings import EmbeddingsModel
from khoj.utils import helpers
def test_get_from_null_dict():
# null handling
assert helpers.get_from_dict(dict()) == dict()
assert helpers.get_from_dict(dict(), None) == None
# key present in nested dictionary
# 1-level dictionary
assert helpers.get_from_dict({"a": 1, "b": 2}, "a") == 1
assert helpers.get_from_dict({"a": 1, "b": 2}, "c") == None
# 2-level dictionary
assert helpers.get_from_dict({"a": {"a_a": 1}, "b": 2}, "a") == {"a_a": 1}
assert helpers.get_from_dict({"a": {"a_a": 1}, "b": 2}, "a", "a_a") == 1
# key not present in nested dictionary
# 2-level_dictionary
assert helpers.get_from_dict({"a": {"a_a": 1}, "b": 2}, "b", "b_a") == None
def test_merge_dicts():
# basic merge of dicts with non-overlapping keys
assert helpers.merge_dicts(priority_dict={"a": 1}, default_dict={"b": 2}) == {"a": 1, "b": 2}
# use default dict items when not present in priority dict
assert helpers.merge_dicts(priority_dict={}, default_dict={"b": 2}) == {"b": 2}
# do not override existing key in priority_dict with default dict
assert helpers.merge_dicts(priority_dict={"a": 1}, default_dict={"a": 2}) == {"a": 1}
2022-09-04 15:31:46 +02:00
def test_lru_cache():
# Test initializing cache
cache = helpers.LRU({"a": 1, "b": 2}, capacity=2)
assert cache == {"a": 1, "b": 2}
2022-09-04 15:31:46 +02:00
# Test capacity overflow
cache["c"] = 3
assert cache == {"b": 2, "c": 3}
2022-09-04 15:31:46 +02:00
# Test delete least recently used item from LRU cache on capacity overflow
cache["b"] # accessing 'b' makes it the most recently used item
cache["d"] = 4 # so 'c' is deleted from the cache instead of 'b'
assert cache == {"b": 2, "d": 4}
@pytest.mark.skip(reason="Memory leak exists on GPU, MPS devices")
def test_encode_docs_memory_leak():
# Arrange
iterations = 50
batch_size = 20
embeddings_model = EmbeddingsModel()
memory_usage_trend = []
# Act
# Encode random strings repeatedly and record memory usage trend
for iteration in range(iterations):
random_docs = [" ".join(secrets.token_hex(5) for _ in range(10)) for _ in range(batch_size)]
a = [embeddings_model.embed_documents(random_docs)]
memory_usage_trend += [psutil.Process().memory_info().rss / (1024 * 1024)]
print(f"{iteration:02d}, {memory_usage_trend[-1]:.2f}", flush=True)
# Calculate slope of line fitting memory usage history
memory_usage_trend = np.array(memory_usage_trend)
slope, _, _, _, _ = linregress(np.arange(len(memory_usage_trend)), memory_usage_trend)
# Assert
# If slope is positive memory utilization is increasing
# Positive threshold of 2, from observing memory usage trend on MPS vs CPU device
assert slope < 2, f"Memory usage increasing at ~{slope:.2f} MB per iteration"