khoj/src/configure.py

125 lines
4.5 KiB
Python
Raw Normal View History

# System Packages
import sys
import logging
# External Packages
import json
# Internal Packages
from src.processor.ledger.beancount_to_jsonl import BeancountToJsonl
from src.processor.markdown.markdown_to_jsonl import MarkdownToJsonl
from src.processor.org_mode.org_to_jsonl import OrgToJsonl
from src.search_type import image_search, text_search
from src.utils.config import SearchType, SearchModels, ProcessorConfigModel, ConversationProcessorConfigModel
from src.utils import state
from src.utils.helpers import LRU, resolve_absolute_path
from src.utils.rawconfig import FullConfig, ProcessorConfig
from src.search_filter.date_filter import DateFilter
from src.search_filter.word_filter import WordFilter
from src.search_filter.file_filter import FileFilter
logger = logging.getLogger(__name__)
def configure_server(args, required=False):
if args.config is None:
if required:
print('Exiting as Khoj is not configured. Configure the application to use it.')
sys.exit(1)
else:
return
else:
state.config = args.config
# Initialize the search model from Config
state.model = configure_search(state.model, state.config, args.regenerate)
# Initialize Processor from Config
state.processor_config = configure_processor(args.config.processor)
def configure_search(model: SearchModels, config: FullConfig, regenerate: bool, t: SearchType = None):
# Initialize Org Notes Search
if (t == SearchType.Org or t == None) and config.content_type.org:
# Extract Entries, Generate Notes Embeddings
model.orgmode_search = text_search.setup(
OrgToJsonl,
config.content_type.org,
search_config=config.search_type.asymmetric,
regenerate=regenerate,
filters=[DateFilter(), WordFilter(), FileFilter()])
# Initialize Org Music Search
if (t == SearchType.Music or t == None) and config.content_type.music:
# Extract Entries, Generate Music Embeddings
model.music_search = text_search.setup(
OrgToJsonl,
config.content_type.music,
search_config=config.search_type.asymmetric,
regenerate=regenerate,
filters=[DateFilter(), WordFilter()])
# Initialize Markdown Search
if (t == SearchType.Markdown or t == None) and config.content_type.markdown:
# Extract Entries, Generate Markdown Embeddings
model.markdown_search = text_search.setup(
MarkdownToJsonl,
config.content_type.markdown,
search_config=config.search_type.asymmetric,
regenerate=regenerate,
filters=[DateFilter(), WordFilter(), FileFilter()])
# Initialize Ledger Search
if (t == SearchType.Ledger or t == None) and config.content_type.ledger:
# Extract Entries, Generate Ledger Embeddings
model.ledger_search = text_search.setup(
BeancountToJsonl,
config.content_type.ledger,
search_config=config.search_type.symmetric,
regenerate=regenerate,
filters=[DateFilter(), WordFilter(), FileFilter()])
# Initialize Image Search
if (t == SearchType.Image or t == None) and config.content_type.image:
# Extract Entries, Generate Image Embeddings
model.image_search = image_search.setup(
config.content_type.image,
search_config=config.search_type.image,
regenerate=regenerate)
# Invalidate Query Cache
state.query_cache = LRU()
return model
def configure_processor(processor_config: ProcessorConfig):
if not processor_config:
return
processor = ProcessorConfigModel()
# Initialize Conversation Processor
if processor_config.conversation:
processor.conversation = configure_conversation_processor(processor_config.conversation)
return processor
def configure_conversation_processor(conversation_processor_config):
conversation_processor = ConversationProcessorConfigModel(conversation_processor_config)
conversation_logfile = resolve_absolute_path(conversation_processor.conversation_logfile)
if conversation_logfile.is_file():
# Load Metadata Logs from Conversation Logfile
with conversation_logfile.open('r') as f:
conversation_processor.meta_log = json.load(f)
logger.info('Conversation logs loaded from disk.')
else:
# Initialize Conversation Logs
conversation_processor.meta_log = {}
conversation_processor.chat_session = ""
return conversation_processor