khoj/src/utils/config.py

120 lines
4 KiB
Python
Raw Normal View History

# System Packages
from enum import Enum
from dataclasses import dataclass
from pathlib import Path
# Internal Packages
from src.utils.helpers import get_from_dict
class SearchType(str, Enum):
Notes = "notes"
Ledger = "ledger"
Music = "music"
Image = "image"
class TextSearchModel():
def __init__(self, entries, corpus_embeddings, bi_encoder, cross_encoder, top_k, verbose):
self.entries = entries
self.corpus_embeddings = corpus_embeddings
self.bi_encoder = bi_encoder
self.cross_encoder = cross_encoder
self.top_k = top_k
self.verbose = verbose
class ImageSearchModel():
def __init__(self, image_names, image_embeddings, image_metadata_embeddings, image_encoder, verbose):
self.image_encoder = image_encoder
self.image_names = image_names
self.image_embeddings = image_embeddings
self.image_metadata_embeddings = image_metadata_embeddings
self.image_encoder = image_encoder
self.verbose = verbose
@dataclass
class SearchModels():
notes_search: TextSearchModel = None
ledger_search: TextSearchModel = None
music_search: TextSearchModel = None
image_search: ImageSearchModel = None
class TextSearchConfig():
def __init__(self, input_files, input_filter, compressed_jsonl, embeddings_file, verbose):
self.input_files = input_files
self.input_filter = input_filter
self.compressed_jsonl = Path(compressed_jsonl)
self.embeddings_file = Path(embeddings_file)
self.verbose = verbose
def create_from_dictionary(config, key_tree, verbose):
text_config = get_from_dict(config, *key_tree)
search_enabled = text_config and ('input-files' in text_config or 'input-filter' in text_config)
if not search_enabled:
return None
return TextSearchConfig(
input_files = text_config['input-files'],
input_filter = text_config['input-filter'],
compressed_jsonl = Path(text_config['compressed-jsonl']),
embeddings_file = Path(text_config['embeddings-file']),
verbose = verbose)
class ImageSearchConfig():
def __init__(self, input_directory, embeddings_file, batch_size, use_xmp_metadata, verbose):
self.input_directory = input_directory
self.embeddings_file = Path(embeddings_file)
self.batch_size = batch_size
self.use_xmp_metadata = use_xmp_metadata
self.verbose = verbose
def create_from_dictionary(config, key_tree, verbose):
image_config = get_from_dict(config, *key_tree)
search_enabled = image_config and 'input-directory' in image_config
if not search_enabled:
return None
return ImageSearchConfig(
input_directory = Path(image_config['input-directory']),
embeddings_file = Path(image_config['embeddings-file']),
batch_size = image_config['batch-size'],
use_xmp_metadata = {'yes': True, 'no': False}[image_config['use-xmp-metadata']],
verbose = verbose)
@dataclass
class SearchConfig():
notes: TextSearchConfig = None
ledger: TextSearchConfig = None
music: TextSearchConfig = None
image: ImageSearchConfig = None
class ConversationProcessorConfig():
def __init__(self, conversation_logfile, conversation_history, openai_api_key, verbose):
self.openai_api_key = openai_api_key
self.conversation_logfile = conversation_logfile
self.conversation_history = conversation_history
self.verbose = verbose
def create_from_dictionary(config, key_tree, verbose):
conversation_config = get_from_dict(config, *key_tree)
if not conversation_config:
return None
return ConversationProcessorConfig(
openai_api_key = conversation_config['openai-api-key'],
conversation_history = '',
conversation_logfile = Path(conversation_config['conversation-logfile']),
verbose = verbose)
@dataclass
class ProcessorConfig():
conversation: ConversationProcessorConfig = None