khoj/tests/conftest.py

534 lines
15 KiB
Python
Raw Normal View History

import os
from pathlib import Path
import pytest
from fastapi import FastAPI
from fastapi.staticfiles import StaticFiles
from fastapi.testclient import TestClient
from khoj.configure import (
configure_middleware,
configure_routes,
configure_search_types,
)
from khoj.database.models import (
Agent,
GithubConfig,
GithubRepoConfig,
KhojApiUser,
KhojUser,
LocalMarkdownConfig,
LocalOrgConfig,
LocalPdfConfig,
LocalPlaintextConfig,
)
from khoj.processor.content.org_mode.org_to_entries import OrgToEntries
from khoj.processor.content.plaintext.plaintext_to_entries import PlaintextToEntries
from khoj.processor.embeddings import CrossEncoderModel, EmbeddingsModel
from khoj.routers.indexer import configure_content
from khoj.search_type import text_search
from khoj.utils import fs_syncer, state
from khoj.utils.config import SearchModels
from khoj.utils.constants import web_directory
from khoj.utils.helpers import resolve_absolute_path
from khoj.utils.rawconfig import ContentConfig, ImageSearchConfig, SearchConfig
from tests.helpers import (
ChatModelOptionsFactory,
OpenAIProcessorConversationConfigFactory,
2024-04-17 09:52:41 +02:00
ProcessLockFactory,
SubscriptionFactory,
UserConversationProcessorConfigFactory,
UserFactory,
)
@pytest.fixture(autouse=True)
def enable_db_access_for_all_tests(db):
pass
@pytest.fixture(scope="session")
def search_config() -> SearchConfig:
state.embeddings_model = dict()
state.embeddings_model["default"] = EmbeddingsModel()
state.cross_encoder_model = dict()
state.cross_encoder_model["default"] = CrossEncoderModel()
model_dir = resolve_absolute_path("~/.khoj/search")
model_dir.mkdir(parents=True, exist_ok=True)
search_config = SearchConfig()
search_config.image = ImageSearchConfig(
encoder="sentence-transformers/clip-ViT-B-32",
model_directory=model_dir / "image/",
encoder_type=None,
)
return search_config
@pytest.mark.django_db
@pytest.fixture
def default_user():
user = UserFactory()
SubscriptionFactory(user=user)
return user
@pytest.mark.django_db
@pytest.fixture
def default_user2():
if KhojUser.objects.filter(username="default").exists():
return KhojUser.objects.get(username="default")
user = KhojUser.objects.create(
username="default",
email="default@example.com",
password="default",
)
SubscriptionFactory(user=user)
return user
@pytest.mark.django_db
@pytest.fixture
def default_user3():
"""
This user should not have any data associated with it
"""
if KhojUser.objects.filter(username="default3").exists():
return KhojUser.objects.get(username="default3")
user = KhojUser.objects.create(
username="default3",
email="default3@example.com",
password="default3",
)
SubscriptionFactory(user=user)
return user
@pytest.mark.django_db
@pytest.fixture
def default_user4():
"""
This user should not have a valid subscription
"""
if KhojUser.objects.filter(username="default4").exists():
return KhojUser.objects.get(username="default4")
user = KhojUser.objects.create(
username="default4",
email="default4@example.com",
password="default4",
)
SubscriptionFactory(user=user, renewal_date=None)
return user
@pytest.mark.django_db
@pytest.fixture
def api_user(default_user):
if KhojApiUser.objects.filter(user=default_user).exists():
return KhojApiUser.objects.get(user=default_user)
return KhojApiUser.objects.create(
user=default_user,
name="api-key",
token="kk-secret",
)
@pytest.mark.django_db
@pytest.fixture
def api_user2(default_user2):
if KhojApiUser.objects.filter(user=default_user2).exists():
return KhojApiUser.objects.get(user=default_user2)
return KhojApiUser.objects.create(
user=default_user2,
name="api-key",
token="kk-diff-secret",
)
@pytest.mark.django_db
@pytest.fixture
def api_user3(default_user3):
if KhojApiUser.objects.filter(user=default_user3).exists():
return KhojApiUser.objects.get(user=default_user3)
return KhojApiUser.objects.create(
user=default_user3,
name="api-key",
token="kk-diff-secret-3",
)
@pytest.mark.django_db
@pytest.fixture
def api_user4(default_user4):
if KhojApiUser.objects.filter(user=default_user4).exists():
return KhojApiUser.objects.get(user=default_user4)
return KhojApiUser.objects.create(
user=default_user4,
name="api-key",
token="kk-diff-secret-4",
)
@pytest.mark.django_db
@pytest.fixture
def offline_agent():
chat_model = ChatModelOptionsFactory()
return Agent.objects.create(
name="Accountant",
chat_model=chat_model,
personality="You are a certified CPA. You are able to tell me how much I've spent based on my notes. Regardless of what I ask, you should always respond with the total amount I've spent. ALWAYS RESPOND WITH A SUMMARY TOTAL OF HOW MUCH MONEY I HAVE SPENT.",
)
@pytest.mark.django_db
@pytest.fixture
def openai_agent():
chat_model = ChatModelOptionsFactory(chat_model="gpt-3.5-turbo", model_type="openai")
return Agent.objects.create(
name="Accountant",
chat_model=chat_model,
personality="You are a certified CPA. You are able to tell me how much I've spent based on my notes. Regardless of what I ask, you should always respond with the total amount I've spent.",
)
@pytest.fixture(scope="session")
def search_models(search_config: SearchConfig):
search_models = SearchModels()
return search_models
2024-04-17 09:52:41 +02:00
@pytest.mark.django_db
@pytest.fixture
def default_process_lock():
return ProcessLockFactory()
@pytest.fixture
def anyio_backend():
return "asyncio"
@pytest.mark.django_db
@pytest.fixture(scope="function")
def content_config(tmp_path_factory, search_models: SearchModels, default_user: KhojUser):
content_dir = tmp_path_factory.mktemp("content")
# Generate Image Embeddings from Test Images
content_config = ContentConfig()
LocalOrgConfig.objects.create(
input_files=None,
input_filter=["tests/data/org/*.org"],
index_heading_entries=False,
user=default_user,
)
text_search.setup(OrgToEntries, get_sample_data("org"), regenerate=False, user=default_user)
if os.getenv("GITHUB_PAT_TOKEN"):
GithubConfig.objects.create(
pat_token=os.getenv("GITHUB_PAT_TOKEN"),
user=default_user,
)
GithubRepoConfig.objects.create(
owner="khoj-ai",
name="lantern",
branch="master",
github_config=GithubConfig.objects.get(user=default_user),
)
LocalPlaintextConfig.objects.create(
input_files=None,
input_filter=["tests/data/plaintext/*.txt", "tests/data/plaintext/*.md", "tests/data/plaintext/*.html"],
user=default_user,
)
return content_config
@pytest.fixture(scope="session")
def md_content_config():
markdown_config = LocalMarkdownConfig.objects.create(
input_files=None,
input_filter=["tests/data/markdown/*.markdown"],
)
return markdown_config
@pytest.fixture(scope="function")
def chat_client(search_config: SearchConfig, default_user2: KhojUser):
return chat_client_builder(search_config, default_user2, require_auth=False)
@pytest.fixture(scope="function")
def chat_client_with_auth(search_config: SearchConfig, default_user2: KhojUser):
return chat_client_builder(search_config, default_user2, require_auth=True)
@pytest.fixture(scope="function")
def chat_client_no_background(search_config: SearchConfig, default_user2: KhojUser):
return chat_client_builder(search_config, default_user2, index_content=False, require_auth=False)
@pytest.mark.django_db
def chat_client_builder(search_config, user, index_content=True, require_auth=False):
# Initialize app state
state.config.search_type = search_config
state.SearchType = configure_search_types()
if index_content:
LocalMarkdownConfig.objects.create(
input_files=None,
input_filter=["tests/data/markdown/*.markdown"],
user=user,
)
# Index Markdown Content for Search
all_files = fs_syncer.collect_files(user=user)
success = configure_content(all_files, user=user)
# Initialize Processor from Config
if os.getenv("OPENAI_API_KEY"):
chat_model = ChatModelOptionsFactory(chat_model="gpt-3.5-turbo", model_type="openai")
chat_model.openai_config = OpenAIProcessorConversationConfigFactory()
UserConversationProcessorConfigFactory(user=user, setting=chat_model)
state.anonymous_mode = not require_auth
app = FastAPI()
configure_routes(app)
configure_middleware(app)
app.mount("/static", StaticFiles(directory=web_directory), name="static")
return TestClient(app)
@pytest.fixture(scope="function")
def fastapi_app():
app = FastAPI()
configure_routes(app)
configure_middleware(app)
app.mount("/static", StaticFiles(directory=web_directory), name="static")
return app
@pytest.fixture(scope="function")
def client(
content_config: ContentConfig,
search_config: SearchConfig,
api_user: KhojApiUser,
):
state.config.content_type = content_config
state.config.search_type = search_config
state.SearchType = configure_search_types()
state.embeddings_model = dict()
state.embeddings_model["default"] = EmbeddingsModel()
state.cross_encoder_model = dict()
state.cross_encoder_model["default"] = CrossEncoderModel()
# These lines help us Mock the Search models for these search types
text_search.setup(
OrgToEntries,
get_sample_data("org"),
regenerate=False,
user=api_user.user,
)
text_search.setup(
PlaintextToEntries,
get_sample_data("plaintext"),
regenerate=False,
user=api_user.user,
)
state.anonymous_mode = False
app = FastAPI()
configure_routes(app)
configure_middleware(app)
app.mount("/static", StaticFiles(directory=web_directory), name="static")
return TestClient(app)
@pytest.fixture(scope="function")
def client_offline_chat(search_config: SearchConfig, default_user2: KhojUser):
# Initialize app state
state.config.search_type = search_config
state.SearchType = configure_search_types()
LocalMarkdownConfig.objects.create(
input_files=None,
input_filter=["tests/data/markdown/*.markdown"],
user=default_user2,
)
all_files = fs_syncer.collect_files(user=default_user2)
configure_content(all_files, user=default_user2)
# Initialize Processor from Config
ChatModelOptionsFactory(
chat_model="NousResearch/Hermes-2-Pro-Mistral-7B-GGUF",
tokenizer=None,
max_prompt_size=None,
model_type="offline",
)
UserConversationProcessorConfigFactory(user=default_user2)
state.anonymous_mode = True
app = FastAPI()
configure_routes(app)
configure_middleware(app)
app.mount("/static", StaticFiles(directory=web_directory), name="static")
return TestClient(app)
@pytest.fixture(scope="function")
def new_org_file(default_user: KhojUser, content_config: ContentConfig):
# Setup
org_config = LocalOrgConfig.objects.filter(user=default_user).first()
input_filters = org_config.input_filter
new_org_file = Path(input_filters[0]).parent / "new_file.org"
new_org_file.touch()
yield new_org_file
# Cleanup
if new_org_file.exists():
new_org_file.unlink()
@pytest.fixture(scope="function")
def org_config_with_only_new_file(new_org_file: Path, default_user: KhojUser):
LocalOrgConfig.objects.update(input_files=[str(new_org_file)], input_filter=None)
return LocalOrgConfig.objects.filter(user=default_user).first()
@pytest.fixture(scope="function")
def pdf_configured_user1(default_user: KhojUser):
LocalPdfConfig.objects.create(
input_files=None,
input_filter=["tests/data/pdf/singlepage.pdf"],
user=default_user,
)
# Index Markdown Content for Search
all_files = fs_syncer.collect_files(user=default_user)
success = configure_content(all_files, user=default_user)
@pytest.fixture(scope="function")
def sample_org_data():
return get_sample_data("org")
def get_sample_data(type):
sample_data = {
"org": {
"elisp.org": """
* Emacs Khoj
/An Emacs interface for [[https://github.com/khoj-ai/khoj][khoj]]/
** Requirements
- Install and Run [[https://github.com/khoj-ai/khoj][khoj]]
** Installation
*** Direct
- Put ~khoj.el~ in your Emacs load path. For e.g. ~/.emacs.d/lisp
- Load via ~use-package~ in your ~/.emacs.d/init.el or .emacs file by adding below snippet
#+begin_src elisp
;; Khoj Package
(use-package khoj
:load-path "~/.emacs.d/lisp/khoj.el"
:bind ("C-c s" . 'khoj))
#+end_src
*** Using [[https://github.com/quelpa/quelpa#installation][Quelpa]]
- Ensure [[https://github.com/quelpa/quelpa#installation][Quelpa]], [[https://github.com/quelpa/quelpa-use-package#installation][quelpa-use-package]] are installed
- Add below snippet to your ~/.emacs.d/init.el or .emacs config file and execute it.
#+begin_src elisp
;; Khoj Package
(use-package khoj
:quelpa (khoj :fetcher url :url "https://raw.githubusercontent.com/khoj-ai/khoj/master/interface/emacs/khoj.el")
:bind ("C-c s" . 'khoj))
#+end_src
** Usage
1. Call ~khoj~ using keybinding ~C-c s~ or ~M-x khoj~
2. Enter Query in Natural Language
e.g. "What is the meaning of life?" "What are my life goals?"
3. Wait for results
*Note: It takes about 15s on a Mac M1 and a ~100K lines corpus of org-mode files*
4. (Optional) Narrow down results further
Include/Exclude specific words from results by adding to query
e.g. "What is the meaning of life? -god +none"
""",
"readme.org": """
* Khoj
/Allow natural language search on user content like notes, images using transformer based models/
All data is processed locally. User can interface with khoj app via [[./interface/emacs/khoj.el][Emacs]], API or Commandline
** Dependencies
- Python3
- [[https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links][Miniconda]]
** Install
#+begin_src shell
git clone https://github.com/khoj-ai/khoj && cd khoj
conda env create -f environment.yml
conda activate khoj
#+end_src""",
},
"markdown": {
"readme.markdown": """
# Khoj
Allow natural language search on user content like notes, images using transformer based models
All data is processed locally. User can interface with khoj app via [Emacs](./interface/emacs/khoj.el), API or Commandline
## Dependencies
- Python3
- [Miniconda](https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links)
## Install
```shell
git clone
conda env create -f environment.yml
conda activate khoj
```
"""
},
"plaintext": {
"readme.txt": """
Khoj
Allow natural language search on user content like notes, images using transformer based models
All data is processed locally. User can interface with khoj app via Emacs, API or Commandline
Dependencies
- Python3
- Miniconda
Install
git clone
conda env create -f environment.yml
conda activate khoj
"""
},
}
return sample_data[type]