khoj/tests/conftest.py

78 lines
2.6 KiB
Python
Raw Normal View History

# Standard Packages
import pytest
# Internal Packages
from src.search_type import image_search, text_search
from src.utils.rawconfig import ContentConfig, TextContentConfig, ImageContentConfig, SearchConfig, TextSearchConfig, ImageSearchConfig
from src.processor.org_mode.org_to_jsonl import org_to_jsonl
from src.utils import state
@pytest.fixture(scope='session')
def search_config(tmp_path_factory):
model_dir = tmp_path_factory.mktemp('data')
search_config = SearchConfig()
search_config.symmetric = TextSearchConfig(
encoder = "sentence-transformers/all-MiniLM-L6-v2",
cross_encoder = "cross-encoder/ms-marco-MiniLM-L-6-v2",
model_directory = model_dir
)
search_config.asymmetric = TextSearchConfig(
encoder = "sentence-transformers/multi-qa-MiniLM-L6-cos-v1",
cross_encoder = "cross-encoder/ms-marco-MiniLM-L-6-v2",
model_directory = model_dir
)
search_config.image = ImageSearchConfig(
encoder = "sentence-transformers/clip-ViT-B-32",
model_directory = model_dir
)
return search_config
@pytest.fixture(scope='session')
def model_dir(search_config):
model_dir = search_config.asymmetric.model_directory
# Generate Image Embeddings from Test Images
# content_config = ContentConfig()
# content_config.image = ImageContentConfig(
# input_directories = ['tests/data/images'],
# embeddings_file = model_dir.joinpath('image_embeddings.pt'),
# batch_size = 10,
# use_xmp_metadata = False)
# image_search.setup(content_config.image, search_config.image, regenerate=False, verbose=True)
# Generate Notes Embeddings from Test Notes
content_config.org = TextContentConfig(
input_files = None,
input_filter = 'tests/data/org/*.org',
compressed_jsonl = model_dir.joinpath('notes.jsonl.gz'),
embeddings_file = model_dir.joinpath('note_embeddings.pt'))
text_search.setup(org_to_jsonl, content_config.org, search_config.asymmetric, regenerate=False, verbose=True)
return model_dir
@pytest.fixture(scope='session')
def content_config(model_dir):
content_config = ContentConfig()
content_config.org = TextContentConfig(
input_files = None,
input_filter = 'tests/data/org/*.org',
compressed_jsonl = model_dir.joinpath('notes.jsonl.gz'),
embeddings_file = model_dir.joinpath('note_embeddings.pt'))
# content_config.image = ImageContentConfig(
# input_directories = ['tests/data/images'],
# embeddings_file = model_dir.joinpath('image_embeddings.pt'),
# batch_size = 10,
# use_xmp_metadata = False)
return content_config