khoj/tests/test_text_search.py

394 lines
16 KiB
Python
Raw Normal View History

# System Packages
import logging
import locale
from pathlib import Path
import os
# External Packages
import pytest
# Internal Packages
from khoj.utils.state import content_index, search_models
from khoj.search_type import text_search
from khoj.processor.org_mode.org_to_jsonl import OrgToJsonl
from khoj.processor.github.github_to_jsonl import GithubToJsonl
from khoj.utils.config import SearchModels
from khoj.utils.fs_syncer import get_org_files
from khoj.utils.rawconfig import ContentConfig, SearchConfig, TextContentConfig
# Test
# ----------------------------------------------------------------------------------------------------
def test_text_search_setup_with_missing_file_raises_error(org_config_with_only_new_file: TextContentConfig):
# Arrange
# Ensure file mentioned in org.input-files is missing
single_new_file = Path(org_config_with_only_new_file.input_files[0])
single_new_file.unlink()
# Act
# Generate notes embeddings during asymmetric setup
with pytest.raises(FileNotFoundError):
get_org_files(org_config_with_only_new_file)
# ----------------------------------------------------------------------------------------------------
def test_get_org_files_with_org_suffixed_dir_doesnt_raise_error(tmp_path: Path):
# Arrange
orgfile = tmp_path / "directory.org" / "file.org"
orgfile.parent.mkdir()
with open(orgfile, "w") as f:
f.write("* Heading\n- List item\n")
org_content_config = TextContentConfig(
input_filter=[f"{tmp_path}/**/*"], compressed_jsonl="test.jsonl", embeddings_file="test.pt"
)
# Act
# should not raise IsADirectoryError and return orgfile
assert get_org_files(org_content_config) == {f"{orgfile}": "* Heading\n- List item\n"}
# ----------------------------------------------------------------------------------------------------
def test_text_search_setup_with_empty_file_raises_error(
org_config_with_only_new_file: TextContentConfig, search_config: SearchConfig
):
# Arrange
data = get_org_files(org_config_with_only_new_file)
# Act
# Generate notes embeddings during asymmetric setup
with pytest.raises(ValueError, match=r"^No valid entries found*"):
text_search.setup(OrgToJsonl, data, org_config_with_only_new_file, search_config.asymmetric, regenerate=True)
# ----------------------------------------------------------------------------------------------------
def test_text_search_setup(content_config: ContentConfig, search_models: SearchModels):
# Arrange
data = get_org_files(content_config.org)
# Act
# Regenerate notes embeddings during asymmetric setup
notes_model = text_search.setup(
OrgToJsonl, data, content_config.org, search_models.text_search.bi_encoder, regenerate=True
)
# Assert
assert len(notes_model.entries) == 10
assert len(notes_model.corpus_embeddings) == 10
# ----------------------------------------------------------------------------------------------------
def test_text_index_same_if_content_unchanged(content_config: ContentConfig, search_models: SearchModels, caplog):
# Arrange
caplog.set_level(logging.INFO, logger="khoj")
data = get_org_files(content_config.org)
# Act
# Generate initial notes embeddings during asymmetric setup
text_search.setup(OrgToJsonl, data, content_config.org, search_models.text_search.bi_encoder, regenerate=True)
initial_logs = caplog.text
caplog.clear() # Clear logs
# Run asymmetric setup again with no changes to data source. Ensure index is not updated
text_search.setup(OrgToJsonl, data, content_config.org, search_models.text_search.bi_encoder, regenerate=False)
final_logs = caplog.text
# Assert
assert "Creating index from scratch." in initial_logs
assert "Creating index from scratch." not in final_logs
# ----------------------------------------------------------------------------------------------------
@pytest.mark.anyio
async def test_text_search(content_config: ContentConfig, search_config: SearchConfig):
# Arrange
data = get_org_files(content_config.org)
search_models.text_search = text_search.initialize_model(search_config.asymmetric)
content_index.org = text_search.setup(
OrgToJsonl, data, content_config.org, search_models.text_search.bi_encoder, regenerate=True
)
query = "How to git install application?"
# Act
hits, entries = await text_search.query(
query, search_model=search_models.text_search, content=content_index.org, rank_results=True
)
results = text_search.collate_results(hits, entries, count=1)
# Assert
# search results should contain "git clone" entry
search_result = results[0].entry
assert "git clone" in search_result
# ----------------------------------------------------------------------------------------------------
def test_entry_chunking_by_max_tokens(org_config_with_only_new_file: TextContentConfig, search_models: SearchModels):
# Arrange
# Insert org-mode entry with size exceeding max token limit to new org file
max_tokens = 256
new_file_to_index = Path(org_config_with_only_new_file.input_files[0])
with open(new_file_to_index, "w") as f:
f.write(f"* Entry more than {max_tokens} words\n")
for index in range(max_tokens + 1):
f.write(f"{index} ")
data = get_org_files(org_config_with_only_new_file)
# Act
# reload embeddings, entries, notes model after adding new org-mode file
initial_notes_model = text_search.setup(
OrgToJsonl, data, org_config_with_only_new_file, search_models.text_search.bi_encoder, regenerate=False
)
# Assert
# verify newly added org-mode entry is split by max tokens
assert len(initial_notes_model.entries) == 2
assert len(initial_notes_model.corpus_embeddings) == 2
# ----------------------------------------------------------------------------------------------------
# @pytest.mark.skip(reason="Flaky due to compressed_jsonl file being rewritten by other tests")
def test_entry_chunking_by_max_tokens_not_full_corpus(
org_config_with_only_new_file: TextContentConfig, search_models: SearchModels
):
# Arrange
# Insert org-mode entry with size exceeding max token limit to new org file
data = {
"readme.org": """
* Khoj
/Allow natural language search on user content like notes, images using transformer based models/
All data is processed locally. User can interface with khoj app via [[./interface/emacs/khoj.el][Emacs]], API or Commandline
** Dependencies
- Python3
- [[https://docs.conda.io/en/latest/miniconda.html#latest-miniconda-installer-links][Miniconda]]
** Install
#+begin_src shell
git clone https://github.com/khoj-ai/khoj && cd khoj
conda env create -f environment.yml
conda activate khoj
#+end_src"""
}
text_search.setup(
OrgToJsonl,
data,
org_config_with_only_new_file,
search_models.text_search.bi_encoder,
regenerate=False,
)
max_tokens = 256
new_file_to_index = Path(org_config_with_only_new_file.input_files[0])
with open(new_file_to_index, "w") as f:
f.write(f"* Entry more than {max_tokens} words\n")
for index in range(max_tokens + 1):
f.write(f"{index} ")
data = get_org_files(org_config_with_only_new_file)
# Act
# reload embeddings, entries, notes model after adding new org-mode file
initial_notes_model = text_search.setup(
OrgToJsonl,
data,
org_config_with_only_new_file,
search_models.text_search.bi_encoder,
regenerate=False,
full_corpus=False,
)
# Assert
# verify newly added org-mode entry is split by max tokens
assert len(initial_notes_model.entries) == 5
assert len(initial_notes_model.corpus_embeddings) == 5
# ----------------------------------------------------------------------------------------------------
def test_regenerate_index_with_new_entry(
content_config: ContentConfig, search_models: SearchModels, new_org_file: Path
):
# Arrange
data = get_org_files(content_config.org)
initial_notes_model = text_search.setup(
OrgToJsonl, data, content_config.org, search_models.text_search.bi_encoder, regenerate=True
)
assert len(initial_notes_model.entries) == 10
assert len(initial_notes_model.corpus_embeddings) == 10
# append org-mode entry to first org input file in config
content_config.org.input_files = [f"{new_org_file}"]
with open(new_org_file, "w") as f:
f.write("\n* A Chihuahua doing Tango\n- Saw a super cute video of a chihuahua doing the Tango on Youtube\n")
data = get_org_files(content_config.org)
# Act
# regenerate notes jsonl, model embeddings and model to include entry from new file
regenerated_notes_model = text_search.setup(
OrgToJsonl, data, content_config.org, search_models.text_search.bi_encoder, regenerate=True
)
# Assert
assert len(regenerated_notes_model.entries) == 11
assert len(regenerated_notes_model.corpus_embeddings) == 11
# verify new entry appended to index, without disrupting order or content of existing entries
error_details = compare_index(initial_notes_model, regenerated_notes_model)
if error_details:
pytest.fail(error_details, False)
# Cleanup
# reset input_files in config to empty list
content_config.org.input_files = []
# ----------------------------------------------------------------------------------------------------
def test_update_index_with_duplicate_entries_in_stable_order(
org_config_with_only_new_file: TextContentConfig, search_models: SearchModels
):
# Arrange
new_file_to_index = Path(org_config_with_only_new_file.input_files[0])
# Insert org-mode entries with same compiled form into new org file
new_entry = "* TODO A Chihuahua doing Tango\n- Saw a super cute video of a chihuahua doing the Tango on Youtube\n"
with open(new_file_to_index, "w") as f:
f.write(f"{new_entry}{new_entry}")
data = get_org_files(org_config_with_only_new_file)
# Act
# load embeddings, entries, notes model after adding new org-mode file
initial_index = text_search.setup(
OrgToJsonl, data, org_config_with_only_new_file, search_models.text_search.bi_encoder, regenerate=True
)
data = get_org_files(org_config_with_only_new_file)
# update embeddings, entries, notes model after adding new org-mode file
updated_index = text_search.setup(
OrgToJsonl, data, org_config_with_only_new_file, search_models.text_search.bi_encoder, regenerate=False
)
# Assert
# verify only 1 entry added even if there are multiple duplicate entries
assert len(initial_index.entries) == len(updated_index.entries) == 1
assert len(initial_index.corpus_embeddings) == len(updated_index.corpus_embeddings) == 1
# verify the same entry is added even when there are multiple duplicate entries
error_details = compare_index(initial_index, updated_index)
if error_details:
pytest.fail(error_details)
# ----------------------------------------------------------------------------------------------------
def test_update_index_with_deleted_entry(org_config_with_only_new_file: TextContentConfig, search_models: SearchModels):
# Arrange
new_file_to_index = Path(org_config_with_only_new_file.input_files[0])
# Insert org-mode entries with same compiled form into new org file
new_entry = "* TODO A Chihuahua doing Tango\n- Saw a super cute video of a chihuahua doing the Tango on Youtube\n"
with open(new_file_to_index, "w") as f:
f.write(f"{new_entry}{new_entry} -- Tatooine")
data = get_org_files(org_config_with_only_new_file)
# load embeddings, entries, notes model after adding new org file with 2 entries
initial_index = text_search.setup(
OrgToJsonl, data, org_config_with_only_new_file, search_models.text_search.bi_encoder, regenerate=True
)
# update embeddings, entries, notes model after removing an entry from the org file
with open(new_file_to_index, "w") as f:
f.write(f"{new_entry}")
data = get_org_files(org_config_with_only_new_file)
# Act
updated_index = text_search.setup(
OrgToJsonl, data, org_config_with_only_new_file, search_models.text_search.bi_encoder, regenerate=False
)
# Assert
# verify only 1 entry added even if there are multiple duplicate entries
assert len(initial_index.entries) == len(updated_index.entries) + 1
assert len(initial_index.corpus_embeddings) == len(updated_index.corpus_embeddings) + 1
# verify the same entry is added even when there are multiple duplicate entries
error_details = compare_index(updated_index, initial_index)
if error_details:
pytest.fail(error_details)
# ----------------------------------------------------------------------------------------------------
def test_update_index_with_new_entry(content_config: ContentConfig, search_models: SearchModels, new_org_file: Path):
# Arrange
data = get_org_files(content_config.org)
initial_notes_model = text_search.setup(
OrgToJsonl, data, content_config.org, search_models.text_search.bi_encoder, regenerate=True, normalize=False
)
# append org-mode entry to first org input file in config
with open(new_org_file, "w") as f:
new_entry = "\n* A Chihuahua doing Tango\n- Saw a super cute video of a chihuahua doing the Tango on Youtube\n"
f.write(new_entry)
data = get_org_files(content_config.org)
# Act
# update embeddings, entries with the newly added note
content_config.org.input_files = [f"{new_org_file}"]
final_notes_model = text_search.setup(
OrgToJsonl, data, content_config.org, search_models.text_search.bi_encoder, regenerate=False, normalize=False
)
# Assert
assert len(final_notes_model.entries) == len(initial_notes_model.entries) + 1
assert len(final_notes_model.corpus_embeddings) == len(initial_notes_model.corpus_embeddings) + 1
# verify new entry appended to index, without disrupting order or content of existing entries
error_details = compare_index(initial_notes_model, final_notes_model)
if error_details:
pytest.fail(error_details, False)
# Cleanup
# reset input_files in config to empty list
content_config.org.input_files = []
# ----------------------------------------------------------------------------------------------------
@pytest.mark.skipif(os.getenv("GITHUB_PAT_TOKEN") is None, reason="GITHUB_PAT_TOKEN not set")
def test_text_search_setup_github(content_config: ContentConfig, search_models: SearchModels):
# Act
# Regenerate github embeddings to test asymmetric setup without caching
github_model = text_search.setup(
GithubToJsonl, content_config.github, search_models.text_search.bi_encoder, regenerate=True
)
# Assert
assert len(github_model.entries) > 1
def compare_index(initial_notes_model, final_notes_model):
mismatched_entries, mismatched_embeddings = [], []
for index in range(len(initial_notes_model.entries)):
if initial_notes_model.entries[index].to_json() != final_notes_model.entries[index].to_json():
mismatched_entries.append(index)
# verify new entry embedding appended to embeddings tensor, without disrupting order or content of existing embeddings
for index in range(len(initial_notes_model.corpus_embeddings)):
if not initial_notes_model.corpus_embeddings[index].allclose(final_notes_model.corpus_embeddings[index]):
mismatched_embeddings.append(index)
error_details = ""
if mismatched_entries:
mismatched_entries_str = ",".join(map(str, mismatched_entries))
error_details += f"Entries at {mismatched_entries_str} not equal\n"
if mismatched_embeddings:
mismatched_embeddings_str = ", ".join(map(str, mismatched_embeddings))
error_details += f"Embeddings at {mismatched_embeddings_str} not equal\n"
return error_details