khoj/README.org

118 lines
4.9 KiB
Org Mode
Raw Normal View History

[[https://github.com/debanjum/khoj/actions/workflows/test.yml/badge.svg]] [[https://github.com/debanjum/khoj/actions/workflows/build.yml/badge.svg]]
* Khoj
/Natural language search engine for your personal notes, transactions and images/
** Features
- Advanced Natural language understanding using Transformer based ML Models
- Your personal data stays local. All search, indexing is done on your machine[[https://github.com/debanjum/khoj#miscellaneous][*]]
- Index Org-mode and Markdown notes, Beancount transactions and Photos
- Interact with Khoj using a [[./src/interface/web/index.html][Web Browser]], [[./src/interface/emacs/khoj.el][Emacs]] or the [[http://localhost:8000/docs][API]].
** Demo
https://user-images.githubusercontent.com/6413477/168417719-8a8bc4e5-8404-42b2-89a7-4493e3d2582c.mp4
** Architecture
[[https://github.com/debanjum/khoj/blob/master/docs/khoj_architecture.png]]
** Setup
*** 1. Clone
#+begin_src shell
git clone https://github.com/debanjum/khoj && cd khoj
#+end_src
*** 2. Configure
- *Required*: Update [[./docker-compose.yml][docker-compose.yml]] to mount your images, (org-mode or markdown) notes and beancount directories
- *Optional*: Edit application configuration in [[./config/sample_config.yml][sample_config.yml]]
*** 3. Run
#+begin_src shell
docker-compose up -d
#+end_src
/Note: The first run will take time. Let it run, it's mostly not hung, just generating embeddings/
** Use
- *Khoj via Web*
- Go to [[http://localhost:8000/]] or open [[./src/interface/web/index.html][index.html]] in your browser
- *Khoj via Emacs*
- [[https://github.com/debanjum/khoj/tree/master/src/interface/emacs#installation][Install]] [[./src/interface/emacs/khoj.el][khoj.el]]
- Run ~M-x khoj <user-query>~
- *Khoj via API*
- See [[http://localhost:8000/docs][Khoj FastAPI Docs]]
- [[http://localhost:8000/search?q=%22what%20is%20the%20meaning%20of%20life%22][Query]]
- [[http://localhost:8000/regenerate?t=ledger][Regenerate Embeddings]]
- [[https://localhost:8000/ui][Configure Application]]
** Upgrade
#+begin_src shell
docker-compose build --pull
#+end_src
** Troubleshooting
- Symptom: Errors out with "Killed" in error message
- Fix: Increase RAM available to Docker Containers in Docker Settings
- Refer: [[https://stackoverflow.com/a/50770267][StackOverflow Solution]], [[https://docs.docker.com/desktop/mac/#resources][Configure Resources on Docker for Mac]]
- Symptom: Errors out complaining about Tensors mismatch, null etc
- Mitigation: Delete content-type > image section from docker_sample_config.yml
** Miscellaneous
- The experimental [[localhost:8000/chat][chat]] API endpoint uses the [[https://openai.com/api/][OpenAI API]]
- It is disabled by default
- To use it add your ~openai-api-key~ to config.yml
** Development Setup
*** Setup on Local Machine
**** 1. Install Dependencies
1. Install Python3 [Required]
2. [[https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html][Install Conda]] [Required]
3. Install Exiftool [Optional]
#+begin_src shell
sudo apt-get -y install libimage-exiftool-perl
#+end_src
**** 2. Install Khoj
#+begin_src shell
git clone https://github.com/debanjum/khoj && cd khoj
conda env create -f config/environment.yml
conda activate khoj
#+end_src
**** 3. Configure
- Configure files/directories to search in ~content-type~ section of ~sample_config.yml~
- To run application on test data, update file paths containing ~/data/~ to ~tests/data/~ in ~sample_config.yml~
- Example replace ~/data/notes/*.org~ with ~tests/data/notes/*.org~
**** 4. Run
Load ML model, generate embeddings and expose API to query notes, images, transactions etc specified in config YAML
#+begin_src shell
python3 -m src.main -c=config/sample_config.yml -vv
#+end_src
*** Upgrade On Local Machine
#+begin_src shell
cd khoj
git pull origin master
conda deactivate khoj
conda env update -f config/environment.yml
conda activate khoj
#+end_src
*** Run Unit tests
#+begin_src shell
pytest
#+end_src
** Acknowledgments
- [[https://huggingface.co/sentence-transformers/multi-qa-MiniLM-L6-cos-v1][Multi-QA MiniLM Model]] for Asymmetric Text Search. See [[https://www.sbert.net/examples/applications/retrieve_rerank/README.html][SBert Documentation]]
- [[https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2][All MiniLM Model]] for Symmetric Text Search
- [[https://github.com/openai/CLIP][OpenAI CLIP Model]] for Image Search. See [[https://www.sbert.net/examples/applications/image-search/README.html][SBert Documentation]]
- Charles Cave for [[http://members.optusnet.com.au/~charles57/GTD/orgnode.html][OrgNode Parser]]
- Sven Marnach for [[https://github.com/smarnach/pyexiftool/blob/master/exiftool.py][PyExifTool]]