To search for notes in multiple, different languages, you can use a [multi-lingual model](https://www.sbert.net/docs/pretrained_models.html#multi-lingual-models).<br/>
For example, the [paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) supports [50+ languages](https://www.sbert.net/docs/pretrained_models.html#:~:text=we%20used%20the%20following%2050%2B%20languages), has good search quality and speed. To use it:
1. Manually update the search config in server's admin settings page. Go to [the search config](http://localhost:42110/server/admin/database/searchmodelconfig/). Either create a new one, if none exists, or update the existing one. Set the bi_encoder to `sentence-transformers/multi-qa-MiniLM-L6-cos-v1` and the cross_encoder to `cross-encoder/ms-marco-MiniLM-L-6-v2`.
2. Regenerate your content index from all the relevant clients. This step is very important, as you'll need to re-encode all your content with the new model.
## Use OpenAI compatible LLM API Server (Self Hosting)
Use this if you want to use non-standard, open or commercial, local or hosted LLM models for Khoj chat
1. Setup your desired chat LLM by installing an OpenAI compatible LLM API Server like [LiteLLM](https://docs.litellm.ai/docs/proxy/quick_start), [llama-cpp-python](https://github.com/abetlen/llama-cpp-python?tab=readme-ov-file#openai-compatible-web-server)
2. Set environment variable `OPENAI_API_BASE="<url-of-your-llm-server>"` before starting Khoj
3. Add ChatModelOptions with `model-type``OpenAI`, and `chat-model` to anything (e.g `gpt-4`) during [Config](/get-started/setup#3-configure)
- *(Optional)* Set the `tokenizer` and `max-prompt-size` relevant to the actual chat model you're using
#### Sample Setup using LiteLLM and Mistral API
```shell
# Install LiteLLM
pip install litellm[proxy]
# Start LiteLLM and use Mistral tiny via Mistral API