mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-11-23 23:48:56 +01:00
98 lines
4.1 KiB
Python
98 lines
4.1 KiB
Python
|
import pandas as pd
|
||
|
import faiss
|
||
|
import numpy as np
|
||
|
|
||
|
from sentence_transformers import SentenceTransformer
|
||
|
|
||
|
import argparse
|
||
|
import os
|
||
|
|
||
|
def create_index(
|
||
|
model,
|
||
|
dataset_path,
|
||
|
index_path,
|
||
|
column_name,
|
||
|
recreate):
|
||
|
# Load Dataset
|
||
|
dataset = pd.read_csv(dataset_path)
|
||
|
|
||
|
# Clean Dataset
|
||
|
dataset = dataset.dropna()
|
||
|
dataset[column_name] = dataset[column_name].str.strip()
|
||
|
|
||
|
# Create Index or Load it if it already exists
|
||
|
if os.path.exists(index_path) and not recreate:
|
||
|
index = faiss.read_index(index_path)
|
||
|
else:
|
||
|
# Create Embedding Vectors of Documents
|
||
|
embeddings = model.encode(dataset[column_name].to_list(), show_progress_bar=True)
|
||
|
embeddings = np.array([embedding for embedding in embeddings]).astype("float32")
|
||
|
|
||
|
index = faiss.IndexIDMap(
|
||
|
faiss.IndexFlatL2(
|
||
|
embeddings.shape[1]))
|
||
|
|
||
|
index.add_with_ids(embeddings, dataset.index.values)
|
||
|
|
||
|
faiss.write_index(index, index_path)
|
||
|
|
||
|
return index, dataset
|
||
|
|
||
|
|
||
|
def resolve_column(dataset, Id, column):
|
||
|
return [list(dataset[dataset.index == idx][column]) for idx in Id[0]]
|
||
|
|
||
|
|
||
|
def vector_search(query, index, dataset, column_name, num_results=10):
|
||
|
query_vector = np.array(query).astype("float32")
|
||
|
D, Id = index.search(query_vector, k=num_results)
|
||
|
|
||
|
return zip(D[0], Id[0], resolve_column(dataset, Id, column_name))
|
||
|
|
||
|
if __name__ == '__main__':
|
||
|
parser = argparse.ArgumentParser(description="Find most suitable match based on users exclude, include preferences")
|
||
|
parser.add_argument('positives', type=str, help="Terms to find closest match to")
|
||
|
parser.add_argument('--negatives', '-n', type=str, help="Terms to find farthest match from")
|
||
|
|
||
|
parser.add_argument('--recreate', action='store_true', default=False, help="Recreate index at index_path from dataset at dataset path")
|
||
|
parser.add_argument('--index', type=str, default="./.faiss_index", help="Path to index for storing vector embeddings")
|
||
|
parser.add_argument('--dataset', type=str, default="./.dataset", help="Path to dataset to generate index from")
|
||
|
parser.add_argument('--column', type=str, default="DATA", help="Name of dataset column to index")
|
||
|
parser.add_argument('--num_results', type=int, default=10, help="Number of most suitable matches to show")
|
||
|
parser.add_argument('--model_name', type=str, default='paraphrase-distilroberta-base-v1', help="Specify name of the SentenceTransformer model to use for encoding")
|
||
|
args = parser.parse_args()
|
||
|
|
||
|
model = SentenceTransformer(args.model_name)
|
||
|
|
||
|
if args.positives and not args.negatives:
|
||
|
# Get index, create it from dataset if doesn't exist
|
||
|
index, dataset = create_index(model, args.dataset, args.index, args.column, args.recreate)
|
||
|
|
||
|
# Create vector to represent user's stated positive preference
|
||
|
preference_vector = model.encode([args.positives])
|
||
|
|
||
|
# Find and display most suitable matches for users preferences in the dataset
|
||
|
results = vector_search(preference_vector, index, dataset, args.column, args.num_results)
|
||
|
|
||
|
print("Most Suitable Matches:")
|
||
|
for similarity, id_, data in results:
|
||
|
print(f"Id: {id_}\nSimilarity: {similarity}\n{args.column}: {data[0]}")
|
||
|
|
||
|
elif args.positives and args.negatives:
|
||
|
# Get index, create it from dataset if doesn't exist
|
||
|
index, dataset = create_index(model, args.dataset, args.index, args.column, args.recreate)
|
||
|
|
||
|
# Create vector to represent user's stated preference
|
||
|
positives_vector = np.array(model.encode([args.positives])).astype("float32")
|
||
|
negatives_vector = np.array(model.encode([args.negatives])).astype("float32")
|
||
|
|
||
|
# preference_vector = np.mean([positives_vector, -1 * negatives_vector], axis=0)
|
||
|
preference_vector = np.add(positives_vector, -1 * negatives_vector)
|
||
|
|
||
|
# Find and display most suitable matches for users preferences in the dataset
|
||
|
results = vector_search(preference_vector, index, dataset, args.column, args.num_results)
|
||
|
|
||
|
print("Most Suitable Matches:")
|
||
|
for similarity, id_, data in results:
|
||
|
print(f"Id: {id_}\nSimilarity: {similarity}\n{args.column}: {data[0]}")
|