khoj/src/main.py

310 lines
12 KiB
Python
Raw Normal View History

# Standard Packages
import sys, json, yaml, os
import time
from typing import Optional
# External Packages
import uvicorn
import torch
from fastapi import FastAPI, Request
from fastapi.responses import HTMLResponse, FileResponse
from fastapi.staticfiles import StaticFiles
from fastapi.templating import Jinja2Templates
# Internal Packages
from src.search_type import image_search, text_search
from src.processor.org_mode.org_to_jsonl import org_to_jsonl
from src.processor.ledger.beancount_to_jsonl import beancount_to_jsonl
from src.processor.markdown.markdown_to_jsonl import markdown_to_jsonl
from src.utils.helpers import get_absolute_path, get_from_dict
from src.utils.cli import cli
from src.utils.config import SearchType, SearchModels, ProcessorConfigModel, ConversationProcessorConfigModel
from src.utils.rawconfig import FullConfig
from src.processor.conversation.gpt import converse, extract_search_type, message_to_log, message_to_prompt, understand, summarize
from src.search_filter.explicit_filter import explicit_filter
from src.search_filter.date_filter import date_filter
# Application Global State
config = FullConfig()
model = SearchModels()
processor_config = ProcessorConfigModel()
config_file = ""
verbose = 0
app = FastAPI()
web_directory = f'src/interface/web/'
app.mount("/static", StaticFiles(directory=web_directory), name="static")
app.mount("/views", StaticFiles(directory="views"), name="views")
templates = Jinja2Templates(directory="views/")
@app.get("/", response_class=FileResponse)
def index():
return FileResponse(web_directory + "index.html")
@app.get('/ui', response_class=HTMLResponse)
def ui(request: Request):
return templates.TemplateResponse("config.html", context={'request': request})
@app.get('/config', response_model=FullConfig)
def config_data():
2021-11-28 01:17:15 +01:00
return config
@app.post('/config')
async def config_data(updated_config: FullConfig):
global config
config = updated_config
with open(config_file, 'w') as outfile:
yaml.dump(yaml.safe_load(config.json(by_alias=True)), outfile)
2021-11-28 18:26:07 +01:00
outfile.close()
return config
@app.get('/search')
def search(q: str, n: Optional[int] = 5, t: Optional[SearchType] = None):
if q is None or q == '':
print(f'No query param (q) passed in API call to initiate search')
return {}
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
user_query = q
results_count = n
results = {}
if (t == SearchType.Org or t == None) and model.orgmode_search:
# query org-mode notes
query_start = time.time()
hits, entries = text_search.query(user_query, model.orgmode_search, device=device, filters=[explicit_filter, date_filter], verbose=verbose)
query_end = time.time()
# collate and return results
collate_start = time.time()
results = text_search.collate_results(hits, entries, results_count)
collate_end = time.time()
if (t == SearchType.Music or t == None) and model.music_search:
# query music library
query_start = time.time()
hits, entries = text_search.query(user_query, model.music_search, device=device, filters=[explicit_filter, date_filter], verbose=verbose)
query_end = time.time()
# collate and return results
collate_start = time.time()
results = text_search.collate_results(hits, entries, results_count)
collate_end = time.time()
if (t == SearchType.Markdown or t == None) and model.orgmode_search:
# query markdown files
query_start = time.time()
hits, entries = text_search.query(user_query, model.markdown_search, device=device, filters=[explicit_filter, date_filter], verbose=verbose)
query_end = time.time()
# collate and return results
collate_start = time.time()
results = text_search.collate_results(hits, entries, results_count)
collate_end = time.time()
if (t == SearchType.Ledger or t == None) and model.ledger_search:
# query transactions
query_start = time.time()
hits, entries = text_search.query(user_query, model.ledger_search, filters=[explicit_filter, date_filter], verbose=verbose)
query_end = time.time()
# collate and return results
collate_start = time.time()
results = text_search.collate_results(hits, entries, results_count)
collate_end = time.time()
if (t == SearchType.Image or t == None) and model.image_search:
# query images
query_start = time.time()
hits = image_search.query(user_query, results_count, model.image_search, verbose=verbose)
output_directory = f'{os.getcwd()}/{web_directory}'
query_end = time.time()
2021-08-23 06:00:54 +02:00
# collate and return results
collate_start = time.time()
results = image_search.collate_results(
2021-08-23 06:00:54 +02:00
hits,
image_names=model.image_search.image_names,
output_directory=output_directory,
static_files_url='/static',
count=results_count)
collate_end = time.time()
2021-08-23 06:00:54 +02:00
if verbose > 1:
print(f"Query took {query_end - query_start:.3f} seconds")
print(f"Collating results took {collate_end - collate_start:.3f} seconds")
return results
@app.get('/reload')
def regenerate(t: Optional[SearchType] = None):
global model
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
model = initialize_search(config, regenerate=False, t=t, device=device)
return {'status': 'ok', 'message': 'reload completed'}
@app.get('/regenerate')
def regenerate(t: Optional[SearchType] = None):
global model
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
model = initialize_search(config, regenerate=True, t=t, device=device)
return {'status': 'ok', 'message': 'regeneration completed'}
@app.get('/beta/search')
def search_beta(q: str, n: Optional[int] = 1):
# Extract Search Type using GPT
metadata = extract_search_type(q, api_key=processor_config.conversation.openai_api_key, verbose=verbose)
search_type = get_from_dict(metadata, "search-type")
# Search
search_results = search(q, n=n, t=SearchType(search_type))
# Return response
return {'status': 'ok', 'result': search_results, 'type': search_type}
@app.get('/chat')
def chat(q: str):
# Load Conversation History
chat_session = processor_config.conversation.chat_session
meta_log = processor_config.conversation.meta_log
# Converse with OpenAI GPT
2022-01-12 15:06:32 +01:00
metadata = understand(q, api_key=processor_config.conversation.openai_api_key, verbose=verbose)
if verbose > 1:
print(f'Understood: {get_from_dict(metadata, "intent")}')
if get_from_dict(metadata, "intent", "memory-type") == "notes":
query = get_from_dict(metadata, "intent", "query")
result_list = search(query, n=1, t=SearchType.Org)
collated_result = "\n".join([item["entry"] for item in result_list])
2022-01-12 15:06:32 +01:00
if verbose > 1:
print(f'Semantically Similar Notes:\n{collated_result}')
gpt_response = summarize(collated_result, summary_type="notes", user_query=q, api_key=processor_config.conversation.openai_api_key)
else:
gpt_response = converse(q, chat_session, api_key=processor_config.conversation.openai_api_key)
# Update Conversation History
processor_config.conversation.chat_session = message_to_prompt(q, chat_session, gpt_message=gpt_response)
processor_config.conversation.meta_log['chat'] = message_to_log(q, metadata, gpt_response, meta_log.get('chat', []))
return {'status': 'ok', 'response': gpt_response}
def initialize_search(config: FullConfig, regenerate: bool, t: SearchType = None, device=torch.device("cpu")):
# Initialize Org Notes Search
if (t == SearchType.Org or t == None) and config.content_type.org:
# Extract Entries, Generate Notes Embeddings
model.orgmode_search = text_search.setup(org_to_jsonl, config.content_type.org, search_config=config.search_type.asymmetric, regenerate=regenerate, device=device, verbose=verbose)
# Initialize Org Music Search
if (t == SearchType.Music or t == None) and config.content_type.music:
# Extract Entries, Generate Music Embeddings
model.music_search = text_search.setup(org_to_jsonl, config.content_type.music, search_config=config.search_type.asymmetric, regenerate=regenerate, device=device, verbose=verbose)
# Initialize Markdown Search
if (t == SearchType.Markdown or t == None) and config.content_type.markdown:
# Extract Entries, Generate Markdown Embeddings
model.markdown_search = text_search.setup(markdown_to_jsonl, config.content_type.markdown, search_config=config.search_type.asymmetric, regenerate=regenerate, device=device, verbose=verbose)
# Initialize Ledger Search
if (t == SearchType.Ledger or t == None) and config.content_type.ledger:
# Extract Entries, Generate Ledger Embeddings
model.ledger_search = text_search.setup(beancount_to_jsonl, config.content_type.ledger, search_config=config.search_type.symmetric, regenerate=regenerate, verbose=verbose)
2021-08-23 06:00:54 +02:00
# Initialize Image Search
if (t == SearchType.Image or t == None) and config.content_type.image:
# Extract Entries, Generate Image Embeddings
2022-01-14 23:09:18 +01:00
model.image_search = image_search.setup(config.content_type.image, search_config=config.search_type.image, regenerate=regenerate, verbose=verbose)
return model
def initialize_processor(config: FullConfig):
2021-12-04 16:11:00 +01:00
if not config.processor:
return
processor_config = ProcessorConfigModel()
# Initialize Conversation Processor
processor_config.conversation = ConversationProcessorConfigModel(config.processor.conversation, verbose)
conversation_logfile = processor_config.conversation.conversation_logfile
if processor_config.conversation.verbose:
print('INFO:\tLoading conversation logs from disk...')
if conversation_logfile.expanduser().absolute().is_file():
# Load Metadata Logs from Conversation Logfile
with open(get_absolute_path(conversation_logfile), 'r') as f:
processor_config.conversation.meta_log = json.load(f)
print('INFO:\tConversation logs loaded from disk.')
else:
# Initialize Conversation Logs
processor_config.conversation.meta_log = {}
processor_config.conversation.chat_session = ""
return processor_config
@app.on_event('shutdown')
def shutdown_event():
# No need to create empty log file
if not processor_config.conversation.meta_log:
return
elif processor_config.conversation.verbose:
print('INFO:\tSaving conversation logs to disk...')
# Summarize Conversation Logs for this Session
chat_session = processor_config.conversation.chat_session
openai_api_key = processor_config.conversation.openai_api_key
conversation_log = processor_config.conversation.meta_log
session = {
"summary": summarize(chat_session, summary_type="chat", api_key=openai_api_key),
"session-start": conversation_log.get("session", [{"session-end": 0}])[-1]["session-end"],
"session-end": len(conversation_log["chat"])
}
if 'session' in conversation_log:
conversation_log['session'].append(session)
else:
conversation_log['session'] = [session]
# Save Conversation Metadata Logs to Disk
conversation_logfile = get_absolute_path(processor_config.conversation.conversation_logfile)
with open(conversation_logfile, "w+", encoding='utf-8') as logfile:
json.dump(conversation_log, logfile)
print('INFO:\tConversation logs saved to disk.')
if __name__ == '__main__':
# Load config from CLI
args = cli(sys.argv[1:])
# Stores the file path to the config file.
config_file = args.config_file
# Store the verbose flag
verbose = args.verbose
# Store the raw config data.
config = args.config
# Set device to GPU if available
device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
# Initialize the search model from Config
model = initialize_search(args.config, args.regenerate, device=device)
2021-08-23 06:00:54 +02:00
# Initialize Processor from Config
processor_config = initialize_processor(args.config)
# Start Application Server
if args.socket:
uvicorn.run(app, proxy_headers=True, uds=args.socket)
else:
uvicorn.run(app, host=args.host, port=args.port)