mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-11-23 23:48:56 +01:00
Expose API endpoint to (re-)generate embeddings from latest notes
- Provides mechanism to update notes from within application - Instead of having to pass the same arguments multiple times Pass it once (or rely on defaults when possible) and let app keep state and location of intermediary files - Allows user to not have to deal with the internals of the application - E.g user doesn't have to specify the jsonl.gz or embeddings file path The app will still put those files in a default location - The user doesn't have to run the generation from the commandline as a separate step
This commit is contained in:
parent
1c00c33e73
commit
04a9a6d62f
1 changed files with 29 additions and 2 deletions
31
main.py
31
main.py
|
@ -1,6 +1,8 @@
|
|||
from typing import Optional
|
||||
from fastapi import FastAPI
|
||||
from search_type import asymmetric
|
||||
from processor.org_mode.org_to_jsonl import org_to_jsonl
|
||||
from utils.helpers import is_none_or_empty
|
||||
import argparse
|
||||
import pathlib
|
||||
import uvicorn
|
||||
|
@ -20,7 +22,7 @@ def search(q: str, n: Optional[int] = 5, t: Optional[str] = 'notes'):
|
|||
if t == 'notes':
|
||||
# query notes
|
||||
hits = asymmetric.query_notes(
|
||||
q,
|
||||
user_query,
|
||||
corpus_embeddings,
|
||||
entries,
|
||||
bi_encoder,
|
||||
|
@ -34,22 +36,47 @@ def search(q: str, n: Optional[int] = 5, t: Optional[str] = 'notes'):
|
|||
return {}
|
||||
|
||||
|
||||
@app.get('/regenerate')
|
||||
def regenerate():
|
||||
org_to_jsonl(args.input_files, args.input_filter, args.compressed_jsonl, args.verbose)
|
||||
|
||||
# Extract Entries
|
||||
global entries
|
||||
entries = asymmetric.extract_entries(args.compressed_jsonl, args.verbose)
|
||||
|
||||
# Compute or Load Embeddings
|
||||
global corpus_embeddings
|
||||
corpus_embeddings = asymmetric.compute_embeddings(entries, bi_encoder, args.embeddings, regenerate=True, verbose=args.verbose)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
# Setup Argument Parser
|
||||
parser = argparse.ArgumentParser(description="Expose API for Semantic Search")
|
||||
parser.add_argument('--input-files', '-i', nargs='*', help="List of org-mode files to process")
|
||||
parser.add_argument('--input-filter', type=str, default=None, help="Regex filter for org-mode files to process")
|
||||
parser.add_argument('--compressed-jsonl', '-j', type=pathlib.Path, default=pathlib.Path(".notes.jsonl.gz"), help="Compressed JSONL formatted notes file to compute embeddings from")
|
||||
parser.add_argument('--embeddings', '-e', type=pathlib.Path, default=pathlib.Path(".notes_embeddings.pt"), help="File to save/load model embeddings to/from")
|
||||
parser.add_argument('--regenerate', action='store_true', default=False, help="Regenerate embeddings from org-mode files. Default: false")
|
||||
parser.add_argument('--verbose', action='count', help="Show verbose conversion logs. Default: 0")
|
||||
args = parser.parse_args()
|
||||
|
||||
# Input Validation
|
||||
if is_none_or_empty(args.input_files) and is_none_or_empty(args.input_filter):
|
||||
print("At least one of org-files or org-file-filter is required to be specified")
|
||||
exit(1)
|
||||
|
||||
# Initialize Model
|
||||
bi_encoder, cross_encoder, top_k = asymmetric.initialize_model()
|
||||
|
||||
# Map notes in Org-Mode files to (compressed) JSONL formatted file
|
||||
if not args.compressed_jsonl.exists() or args.regenerate:
|
||||
org_to_jsonl(args.input_files, args.input_filter, args.compressed_jsonl, args.verbose)
|
||||
|
||||
# Extract Entries
|
||||
entries = asymmetric.extract_entries(args.compressed_jsonl, args.verbose)
|
||||
|
||||
# Compute or Load Embeddings
|
||||
corpus_embeddings = asymmetric.compute_embeddings(entries, bi_encoder, args.embeddings, args.verbose)
|
||||
corpus_embeddings = asymmetric.compute_embeddings(entries, bi_encoder, args.embeddings, regenerate=args.regenerate, verbose=args.verbose)
|
||||
|
||||
# Start Application Server
|
||||
uvicorn.run(app)
|
||||
|
|
Loading…
Reference in a new issue