Add configurable filter support to Symmetric Ledger Search

This commit is contained in:
Debanjum Singh Solanky 2022-07-14 23:40:41 +04:00
parent 50658453cd
commit 0e979587e0
2 changed files with 17 additions and 40 deletions

View file

@ -74,10 +74,10 @@ def search(q: str, n: Optional[int] = 5, t: Optional[SearchType] = None):
if (t == SearchType.Ledger or t == None) and model.ledger_search:
# query transactions
hits = symmetric_ledger.query(user_query, model.ledger_search)
hits, entries = symmetric_ledger.query(user_query, model.ledger_search)
# collate and return results
return symmetric_ledger.collate_results(hits, model.ledger_search.entries, results_count)
return symmetric_ledger.collate_results(hits, entries, results_count)
if (t == SearchType.Image or t == None) and model.image_search:
# query transactions

View file

@ -1,9 +1,7 @@
# Standard Packages
import json
import gzip
import re
import argparse
import pathlib
from copy import deepcopy
# External Packages
import torch
@ -62,27 +60,27 @@ def compute_embeddings(entries, bi_encoder, embeddings_file, regenerate=False, v
return corpus_embeddings
def query(raw_query, model: TextSearchModel):
def query(raw_query, model: TextSearchModel, filters=[]):
"Search all notes for entries that answer the query"
# Separate natural query from explicit required, blocked words filters
query = " ".join([word for word in raw_query.split() if not word.startswith("+") and not word.startswith("-")])
required_words = set([word[1:].lower() for word in raw_query.split() if word.startswith("+")])
blocked_words = set([word[1:].lower() for word in raw_query.split() if word.startswith("-")])
# Copy original embeddings, entries to filter them for query
query = raw_query
corpus_embeddings = deepcopy(model.corpus_embeddings)
entries = deepcopy(model.entries)
# Filter query, entries and embeddings before semantic search
for filter in filters:
query, entries, corpus_embeddings = filter(query, entries, corpus_embeddings)
if entries is None or len(entries) == 0:
return [], []
# Encode the query using the bi-encoder
question_embedding = model.bi_encoder.encode(query, convert_to_tensor=True)
# Find relevant entries for the query
hits = util.semantic_search(question_embedding, model.corpus_embeddings, top_k=model.top_k)
hits = hits[0] # Get the hits for the first query
# Filter results using explicit filters
hits = explicit_filter(hits, model.entries, required_words, blocked_words)
if hits is None or len(hits) == 0:
return hits
hits = util.semantic_search(question_embedding, corpus_embeddings, top_k=model.top_k)[0]
# Score all retrieved entries using the cross-encoder
cross_inp = [[query, model.entries[hit['corpus_id']]] for hit in hits]
cross_inp = [[query, entries[hit['corpus_id']]] for hit in hits]
cross_scores = model.cross_encoder.predict(cross_inp)
# Store cross-encoder scores in results dictionary for ranking
@ -93,28 +91,7 @@ def query(raw_query, model: TextSearchModel):
hits.sort(key=lambda x: x['score'], reverse=True) # sort by biencoder score
hits.sort(key=lambda x: x['cross-score'], reverse=True) # sort by cross encoder score
return hits
def explicit_filter(hits, entries, required_words, blocked_words):
hits_by_word_set = [(set(word.lower()
for word
in re.split(
r',|\.| |\]|\[\(|\)|\{|\}',
entries[hit['corpus_id']])
if word != ""),
hit)
for hit in hits]
if len(required_words) == 0 and len(blocked_words) == 0:
return hits
if len(required_words) > 0:
return [hit for (words_in_entry, hit) in hits_by_word_set
if required_words.intersection(words_in_entry) and not blocked_words.intersection(words_in_entry)]
if len(blocked_words) > 0:
return [hit for (words_in_entry, hit) in hits_by_word_set
if not blocked_words.intersection(words_in_entry)]
return hits
return hits, entries
def render_results(hits, entries, count=5, display_biencoder_results=False):