mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-11-27 17:35:07 +01:00
Consolidate the search config models and pass verbose as a top level flag
This commit is contained in:
parent
43e647835b
commit
10e4065e05
6 changed files with 52 additions and 90 deletions
71
src/main.py
71
src/main.py
|
@ -13,16 +13,16 @@ from fastapi.templating import Jinja2Templates
|
|||
from src.search_type import asymmetric, symmetric_ledger, image_search
|
||||
from src.utils.helpers import get_absolute_path
|
||||
from src.utils.cli import cli
|
||||
from src.utils.config import SearchType, SearchModels, TextSearchConfig, ImageSearchConfig, SearchConfig, ProcessorConfig, ConversationProcessorConfig
|
||||
from src.utils.rawconfig import FullConfig
|
||||
from src.utils.config import SearchType, SearchModels, ProcessorConfig, ConversationProcessorConfigDTO
|
||||
from src.utils.rawconfig import FullConfigModel
|
||||
from src.processor.conversation.gpt import converse, message_to_log, message_to_prompt, understand
|
||||
|
||||
# Application Global State
|
||||
model = SearchModels()
|
||||
search_config = SearchConfig()
|
||||
processor_config = ProcessorConfig()
|
||||
config = {}
|
||||
config_file = ""
|
||||
verbose = 0
|
||||
app = FastAPI()
|
||||
|
||||
app.mount("/views", StaticFiles(directory="views"), name="views")
|
||||
|
@ -32,12 +32,12 @@ templates = Jinja2Templates(directory="views/")
|
|||
def ui(request: Request):
|
||||
return templates.TemplateResponse("config.html", context={'request': request})
|
||||
|
||||
@app.get('/config', response_model=FullConfig)
|
||||
@app.get('/config', response_model=FullConfigModel)
|
||||
def config():
|
||||
return config
|
||||
|
||||
@app.post('/config')
|
||||
async def config(updated_config: FullConfig):
|
||||
async def config(updated_config: FullConfigModel):
|
||||
global config
|
||||
config = updated_config
|
||||
with open(config_file, 'w') as outfile:
|
||||
|
@ -83,7 +83,7 @@ def search(q: str, n: Optional[int] = 5, t: Optional[SearchType] = None):
|
|||
return image_search.collate_results(
|
||||
hits,
|
||||
model.image_search.image_names,
|
||||
search_config.image.input_directory,
|
||||
config.content_type.image.input_directory,
|
||||
results_count)
|
||||
|
||||
else:
|
||||
|
@ -92,22 +92,7 @@ def search(q: str, n: Optional[int] = 5, t: Optional[SearchType] = None):
|
|||
|
||||
@app.get('/regenerate')
|
||||
def regenerate(t: Optional[SearchType] = None):
|
||||
if (t == SearchType.Notes or t == None) and search_config.notes:
|
||||
# Extract Entries, Generate Embeddings
|
||||
model.notes_search = asymmetric.setup(search_config.notes, regenerate=True)
|
||||
|
||||
if (t == SearchType.Music or t == None) and search_config.music:
|
||||
# Extract Entries, Generate Song Embeddings
|
||||
model.music_search = asymmetric.setup(search_config.music, regenerate=True)
|
||||
|
||||
if (t == SearchType.Ledger or t == None) and search_config.ledger:
|
||||
# Extract Entries, Generate Embeddings
|
||||
model.ledger_search = symmetric_ledger.setup(search_config.ledger, regenerate=True)
|
||||
|
||||
if (t == SearchType.Image or t == None) and search_config.image:
|
||||
# Extract Images, Generate Embeddings
|
||||
model.image_search = image_search.setup(search_config.image, regenerate=True)
|
||||
|
||||
initialize_search(regenerate=True)
|
||||
return {'status': 'ok', 'message': 'regeneration completed'}
|
||||
|
||||
|
||||
|
@ -128,41 +113,40 @@ def chat(q: str):
|
|||
return {'status': 'ok', 'response': gpt_response}
|
||||
|
||||
|
||||
def initialize_search(regenerate, verbose):
|
||||
def initialize_search(regenerate: bool, t: SearchType = None):
|
||||
model = SearchModels()
|
||||
search_config = SearchConfig()
|
||||
|
||||
# Initialize Org Notes Search
|
||||
if config.content_type.org:
|
||||
search_config.notes = TextSearchConfig(config.content_type.org, verbose)
|
||||
model.notes_search = asymmetric.setup(search_config.notes, regenerate=regenerate)
|
||||
if (t == SearchType.Notes or t == None) and config.content_type.org:
|
||||
# Extract Entries, Generate Notes Embeddings
|
||||
model.notes_search = asymmetric.setup(config.content_type.org, regenerate=regenerate, verbose=verbose)
|
||||
|
||||
# Initialize Org Music Search
|
||||
if config.content_type.music:
|
||||
search_config.music = TextSearchConfig(config.content_type.music, verbose)
|
||||
model.music_search = asymmetric.setup(search_config.music, regenerate=regenerate)
|
||||
if (t == SearchType.Music or t == None) and config.content_type.music:
|
||||
# Extract Entries, Generate Music Embeddings
|
||||
model.music_search = asymmetric.setup(config.content_type.music, regenerate=regenerate, verbose=verbose)
|
||||
|
||||
# Initialize Ledger Search
|
||||
if config.content_type.ledger:
|
||||
search_config.ledger = TextSearchConfig(config.content_type.org, verbose)
|
||||
model.ledger_search = symmetric_ledger.setup(search_config.ledger, regenerate=regenerate)
|
||||
if (t == SearchType.Ledger or t == None) and config.content_type.ledger:
|
||||
# Extract Entries, Generate Ledger Embeddings
|
||||
model.ledger_search = symmetric_ledger.setup(config.content_type.ledger, regenerate=regenerate, verbose=verbose)
|
||||
|
||||
# Initialize Image Search
|
||||
if config.content_type.image:
|
||||
search_config.image = ImageSearchConfig(config.content_type.image, verbose)
|
||||
model.image_search = image_search.setup(search_config.image, regenerate=regenerate)
|
||||
if (t == SearchType.Image or t == None) and config.content_type.image:
|
||||
# Extract Entries, Generate Image Embeddings
|
||||
model.image_search = image_search.setup(config.content_type.image, regenerate=regenerate, verbose=verbose)
|
||||
|
||||
return model, search_config
|
||||
return model
|
||||
|
||||
|
||||
def initialize_processor(verbose):
|
||||
def initialize_processor():
|
||||
if not config.processor:
|
||||
return
|
||||
|
||||
processor_config = ProcessorConfig()
|
||||
|
||||
# Initialize Conversation Processor
|
||||
processor_config.conversation = ConversationProcessorConfig(config.processor.conversation, verbose)
|
||||
processor_config.conversation = ConversationProcessorConfigDTO(config.processor.conversation, verbose)
|
||||
|
||||
conversation_logfile = processor_config.conversation.conversation_logfile
|
||||
if processor_config.conversation.verbose:
|
||||
|
@ -211,14 +195,17 @@ if __name__ == '__main__':
|
|||
# Stores the file path to the config file.
|
||||
config_file = args.config_file
|
||||
|
||||
# Store the verbose flag
|
||||
verbose = args.verbose
|
||||
|
||||
# Store the raw config data.
|
||||
config = args.config
|
||||
|
||||
# Initialize Search from Config
|
||||
model, search_config = initialize_search(args.regenerate, args.verbose)
|
||||
# Initialize the search model from Config
|
||||
model = initialize_search(args.regenerate)
|
||||
|
||||
# Initialize Processor from Config
|
||||
processor_config = initialize_processor(args.verbose)
|
||||
processor_config = initialize_processor()
|
||||
|
||||
# Start Application Server
|
||||
if args.socket:
|
||||
|
|
|
@ -14,7 +14,8 @@ from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
|||
# Internal Packages
|
||||
from src.utils.helpers import get_absolute_path, resolve_absolute_path
|
||||
from src.processor.org_mode.org_to_jsonl import org_to_jsonl
|
||||
from src.utils.config import TextSearchModel, TextSearchConfig
|
||||
from src.utils.config import TextSearchModel
|
||||
from src.utils.rawconfig import TextSearchConfigModel
|
||||
|
||||
|
||||
def initialize_model():
|
||||
|
@ -148,22 +149,22 @@ def collate_results(hits, entries, count=5):
|
|||
in hits[0:count]]
|
||||
|
||||
|
||||
def setup(config: TextSearchConfig, regenerate: bool) -> TextSearchModel:
|
||||
def setup(config: TextSearchConfigModel, regenerate: bool, verbose: bool) -> TextSearchModel:
|
||||
# Initialize Model
|
||||
bi_encoder, cross_encoder, top_k = initialize_model()
|
||||
|
||||
# Map notes in Org-Mode files to (compressed) JSONL formatted file
|
||||
if not resolve_absolute_path(config.compressed_jsonl).exists() or regenerate:
|
||||
org_to_jsonl(config.input_files, config.input_filter, config.compressed_jsonl, config.verbose)
|
||||
org_to_jsonl(config.input_files, config.input_filter, config.compressed_jsonl, verbose)
|
||||
|
||||
# Extract Entries
|
||||
entries = extract_entries(config.compressed_jsonl, config.verbose)
|
||||
entries = extract_entries(config.compressed_jsonl, verbose)
|
||||
top_k = min(len(entries), top_k) # top_k hits can't be more than the total entries in corpus
|
||||
|
||||
# Compute or Load Embeddings
|
||||
corpus_embeddings = compute_embeddings(entries, bi_encoder, config.embeddings_file, regenerate=regenerate, verbose=config.verbose)
|
||||
corpus_embeddings = compute_embeddings(entries, bi_encoder, config.embeddings_file, regenerate=regenerate, verbose=verbose)
|
||||
|
||||
return TextSearchModel(entries, corpus_embeddings, bi_encoder, cross_encoder, top_k, verbose=config.verbose)
|
||||
return TextSearchModel(entries, corpus_embeddings, bi_encoder, cross_encoder, top_k, verbose=verbose)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -10,9 +10,10 @@ from tqdm import trange
|
|||
import torch
|
||||
|
||||
# Internal Packages
|
||||
from src.utils.helpers import get_absolute_path, resolve_absolute_path
|
||||
from src.utils.helpers import resolve_absolute_path
|
||||
import src.utils.exiftool as exiftool
|
||||
from src.utils.config import ImageSearchModel, ImageSearchConfig
|
||||
from src.utils.config import ImageSearchModel
|
||||
from src.utils.rawconfig import ImageSearchConfigModel
|
||||
|
||||
|
||||
def initialize_model():
|
||||
|
@ -153,7 +154,7 @@ def collate_results(hits, image_names, image_directory, count=5):
|
|||
in hits[0:count]]
|
||||
|
||||
|
||||
def setup(config: ImageSearchConfig, regenerate: bool) -> ImageSearchModel:
|
||||
def setup(config: ImageSearchConfigModel, regenerate: bool, verbose: bool) -> ImageSearchModel:
|
||||
# Initialize Model
|
||||
encoder = initialize_model()
|
||||
|
||||
|
@ -170,13 +171,13 @@ def setup(config: ImageSearchConfig, regenerate: bool) -> ImageSearchModel:
|
|||
batch_size=config.batch_size,
|
||||
regenerate=regenerate,
|
||||
use_xmp_metadata=config.use_xmp_metadata,
|
||||
verbose=config.verbose)
|
||||
verbose=verbose)
|
||||
|
||||
return ImageSearchModel(image_names,
|
||||
image_embeddings,
|
||||
image_metadata_embeddings,
|
||||
encoder,
|
||||
config.verbose)
|
||||
verbose)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -12,7 +12,8 @@ from sentence_transformers import SentenceTransformer, CrossEncoder, util
|
|||
# Internal Packages
|
||||
from src.utils.helpers import get_absolute_path, resolve_absolute_path
|
||||
from src.processor.ledger.beancount_to_jsonl import beancount_to_jsonl
|
||||
from src.utils.config import TextSearchModel, TextSearchConfig
|
||||
from src.utils.config import TextSearchModel
|
||||
from src.utils.rawconfig import TextSearchConfigModel
|
||||
|
||||
|
||||
def initialize_model():
|
||||
|
@ -140,7 +141,7 @@ def collate_results(hits, entries, count=5):
|
|||
in hits[0:count]]
|
||||
|
||||
|
||||
def setup(config: TextSearchConfig, regenerate: bool) -> TextSearchModel:
|
||||
def setup(config: TextSearchConfigModel, regenerate: bool, verbose: bool) -> TextSearchModel:
|
||||
# Initialize Model
|
||||
bi_encoder, cross_encoder, top_k = initialize_model()
|
||||
|
||||
|
@ -153,9 +154,9 @@ def setup(config: TextSearchConfig, regenerate: bool) -> TextSearchModel:
|
|||
top_k = min(len(entries), top_k)
|
||||
|
||||
# Compute or Load Embeddings
|
||||
corpus_embeddings = compute_embeddings(entries, bi_encoder, config.embeddings_file, regenerate=regenerate, verbose=config.verbose)
|
||||
corpus_embeddings = compute_embeddings(entries, bi_encoder, config.embeddings_file, regenerate=regenerate, verbose=verbose)
|
||||
|
||||
return TextSearchModel(entries, corpus_embeddings, bi_encoder, cross_encoder, top_k, verbose=config.verbose)
|
||||
return TextSearchModel(entries, corpus_embeddings, bi_encoder, cross_encoder, top_k, verbose=verbose)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
|
|
@ -8,7 +8,7 @@ import yaml
|
|||
|
||||
# Internal Packages
|
||||
from src.utils.helpers import is_none_or_empty, get_absolute_path, resolve_absolute_path, merge_dicts
|
||||
from src.utils.rawconfig import FullConfig
|
||||
from src.utils.rawconfig import FullConfigModel
|
||||
|
||||
def cli(args=None):
|
||||
if is_none_or_empty(args):
|
||||
|
@ -37,7 +37,7 @@ def cli(args=None):
|
|||
with open(get_absolute_path(args.config_file), 'r', encoding='utf-8') as config_file:
|
||||
config_from_file = yaml.safe_load(config_file)
|
||||
args.config = merge_dicts(priority_dict=config_from_file, default_dict=args.config)
|
||||
args.config = FullConfig.parse_obj(args.config)
|
||||
args.config = FullConfigModel.parse_obj(args.config)
|
||||
|
||||
if args.org_files:
|
||||
args.config['content-type']['org']['input-files'] = args.org_files
|
||||
|
|
|
@ -4,9 +4,7 @@ from dataclasses import dataclass
|
|||
from pathlib import Path
|
||||
|
||||
# Internal Packages
|
||||
from src.utils.helpers import get_from_dict
|
||||
|
||||
from src.utils.rawconfig import TextSearchConfigModel, ImageSearchConfigModel, ProcessorConversationConfigModel
|
||||
from src.utils.rawconfig import ProcessorConversationConfigModel
|
||||
|
||||
|
||||
class SearchType(str, Enum):
|
||||
|
@ -44,33 +42,7 @@ class SearchModels():
|
|||
image_search: ImageSearchModel = None
|
||||
|
||||
|
||||
class TextSearchConfigModel():
|
||||
def __init__(self, text_search_config: TextSearchConfigModel, verbose: bool):
|
||||
self.input_files = text_search_config.input_files
|
||||
self.input_filter = text_search_config.input_filter
|
||||
self.compressed_jsonl = Path(text_search_config.compressed_jsonl)
|
||||
self.embeddings_file = Path(text_search_config.embeddings_file)
|
||||
self.verbose = verbose
|
||||
|
||||
|
||||
class ImageSearchConfigModel():
|
||||
def __init__(self, image_search_config: ImageSearchConfigModel, verbose):
|
||||
self.input_directory = Path(image_search_config.input_directory)
|
||||
self.embeddings_file = Path(image_search_config.embeddings_file)
|
||||
self.batch_size = image_search_config.batch_size
|
||||
self.use_xmp_metadata = image_search_config.use_xmp_metadata
|
||||
self.verbose = verbose
|
||||
|
||||
|
||||
@dataclass
|
||||
class SearchConfig():
|
||||
notes: TextSearchConfigModel = None
|
||||
ledger: TextSearchConfigModel = None
|
||||
music: TextSearchConfigModel = None
|
||||
image: ImageSearchConfigModel = None
|
||||
|
||||
|
||||
class ConversationProcessorConfig():
|
||||
class ConversationProcessorConfigDTO():
|
||||
def __init__(self, processor_config: ProcessorConversationConfigModel, verbose: bool):
|
||||
self.openai_api_key = processor_config.open_api_key
|
||||
self.conversation_logfile = Path(processor_config.conversation_logfile)
|
||||
|
@ -81,4 +53,4 @@ class ConversationProcessorConfig():
|
|||
|
||||
@dataclass
|
||||
class ProcessorConfig():
|
||||
conversation: ConversationProcessorConfig = None
|
||||
conversation: ConversationProcessorConfigDTO = None
|
||||
|
|
Loading…
Reference in a new issue