mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-11-27 17:35:07 +01:00
Deduplicate searches in normal mode & across research iterations
- Deduplicate online, doc search queries across research iterations. This avoids running previously run online, doc searches again and dedupes online, doc context seen by model to generate response. - Deduplicate online search queries generated by chat model for each user query. - Do not pass online, docs, code context separately when generate response in research mode. These are already collected in the meta research passed with the user query - Improve formatting of context passed to generate research response - Use xml tags to delimit context. Pass per iteration queries in each iteration result - Put user query before meta research results in user message passed for generating response This deduplications will improve speed, cost & quality of research mode
This commit is contained in:
parent
306f7a2132
commit
137687ee49
6 changed files with 86 additions and 42 deletions
|
@ -112,6 +112,7 @@ class InformationCollectionIteration:
|
||||||
onlineContext: dict = None,
|
onlineContext: dict = None,
|
||||||
codeContext: dict = None,
|
codeContext: dict = None,
|
||||||
summarizedResult: str = None,
|
summarizedResult: str = None,
|
||||||
|
warning: str = None,
|
||||||
):
|
):
|
||||||
self.tool = tool
|
self.tool = tool
|
||||||
self.query = query
|
self.query = query
|
||||||
|
@ -119,6 +120,7 @@ class InformationCollectionIteration:
|
||||||
self.onlineContext = onlineContext
|
self.onlineContext = onlineContext
|
||||||
self.codeContext = codeContext
|
self.codeContext = codeContext
|
||||||
self.summarizedResult = summarizedResult
|
self.summarizedResult = summarizedResult
|
||||||
|
self.warning = warning
|
||||||
|
|
||||||
|
|
||||||
def construct_iteration_history(
|
def construct_iteration_history(
|
||||||
|
|
|
@ -4,7 +4,7 @@ import logging
|
||||||
import os
|
import os
|
||||||
import urllib.parse
|
import urllib.parse
|
||||||
from collections import defaultdict
|
from collections import defaultdict
|
||||||
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
from typing import Any, Callable, Dict, List, Optional, Set, Tuple, Union
|
||||||
|
|
||||||
import aiohttp
|
import aiohttp
|
||||||
from bs4 import BeautifulSoup
|
from bs4 import BeautifulSoup
|
||||||
|
@ -66,6 +66,7 @@ async def search_online(
|
||||||
custom_filters: List[str] = [],
|
custom_filters: List[str] = [],
|
||||||
max_webpages_to_read: int = DEFAULT_MAX_WEBPAGES_TO_READ,
|
max_webpages_to_read: int = DEFAULT_MAX_WEBPAGES_TO_READ,
|
||||||
query_images: List[str] = None,
|
query_images: List[str] = None,
|
||||||
|
previous_subqueries: Set = set(),
|
||||||
agent: Agent = None,
|
agent: Agent = None,
|
||||||
tracer: dict = {},
|
tracer: dict = {},
|
||||||
):
|
):
|
||||||
|
@ -76,19 +77,24 @@ async def search_online(
|
||||||
return
|
return
|
||||||
|
|
||||||
# Breakdown the query into subqueries to get the correct answer
|
# Breakdown the query into subqueries to get the correct answer
|
||||||
subqueries = await generate_online_subqueries(
|
new_subqueries = await generate_online_subqueries(
|
||||||
query, conversation_history, location, user, query_images=query_images, agent=agent, tracer=tracer
|
query, conversation_history, location, user, query_images=query_images, agent=agent, tracer=tracer
|
||||||
)
|
)
|
||||||
response_dict = {}
|
subqueries = list(new_subqueries - previous_subqueries)
|
||||||
|
response_dict: Dict[str, Dict[str, List[Dict] | Dict]] = {}
|
||||||
|
|
||||||
if subqueries:
|
if is_none_or_empty(subqueries):
|
||||||
logger.info(f"🌐 Searching the Internet for {list(subqueries)}")
|
logger.info("No new subqueries to search online")
|
||||||
if send_status_func:
|
yield response_dict
|
||||||
subqueries_str = "\n- " + "\n- ".join(list(subqueries))
|
return
|
||||||
async for event in send_status_func(f"**Searching the Internet for**: {subqueries_str}"):
|
|
||||||
yield {ChatEvent.STATUS: event}
|
|
||||||
|
|
||||||
with timer(f"Internet searches for {list(subqueries)} took", logger):
|
logger.info(f"🌐 Searching the Internet for {subqueries}")
|
||||||
|
if send_status_func:
|
||||||
|
subqueries_str = "\n- " + "\n- ".join(subqueries)
|
||||||
|
async for event in send_status_func(f"**Searching the Internet for**: {subqueries_str}"):
|
||||||
|
yield {ChatEvent.STATUS: event}
|
||||||
|
|
||||||
|
with timer(f"Internet searches for {subqueries} took", logger):
|
||||||
search_func = search_with_google if SERPER_DEV_API_KEY else search_with_jina
|
search_func = search_with_google if SERPER_DEV_API_KEY else search_with_jina
|
||||||
search_tasks = [search_func(subquery, location) for subquery in subqueries]
|
search_tasks = [search_func(subquery, location) for subquery in subqueries]
|
||||||
search_results = await asyncio.gather(*search_tasks)
|
search_results = await asyncio.gather(*search_tasks)
|
||||||
|
@ -119,7 +125,9 @@ async def search_online(
|
||||||
async for event in send_status_func(f"**Reading web pages**: {webpage_links_str}"):
|
async for event in send_status_func(f"**Reading web pages**: {webpage_links_str}"):
|
||||||
yield {ChatEvent.STATUS: event}
|
yield {ChatEvent.STATUS: event}
|
||||||
tasks = [
|
tasks = [
|
||||||
read_webpage_and_extract_content(data["queries"], link, data["content"], user=user, agent=agent, tracer=tracer)
|
read_webpage_and_extract_content(
|
||||||
|
data["queries"], link, data.get("content"), user=user, agent=agent, tracer=tracer
|
||||||
|
)
|
||||||
for link, data in webpages.items()
|
for link, data in webpages.items()
|
||||||
]
|
]
|
||||||
results = await asyncio.gather(*tasks)
|
results = await asyncio.gather(*tasks)
|
||||||
|
|
|
@ -6,7 +6,7 @@ import os
|
||||||
import threading
|
import threading
|
||||||
import time
|
import time
|
||||||
import uuid
|
import uuid
|
||||||
from typing import Any, Callable, List, Optional, Union
|
from typing import Any, Callable, List, Optional, Set, Union
|
||||||
|
|
||||||
import cron_descriptor
|
import cron_descriptor
|
||||||
import pytz
|
import pytz
|
||||||
|
@ -349,6 +349,7 @@ async def extract_references_and_questions(
|
||||||
location_data: LocationData = None,
|
location_data: LocationData = None,
|
||||||
send_status_func: Optional[Callable] = None,
|
send_status_func: Optional[Callable] = None,
|
||||||
query_images: Optional[List[str]] = None,
|
query_images: Optional[List[str]] = None,
|
||||||
|
previous_inferred_queries: Set = set(),
|
||||||
agent: Agent = None,
|
agent: Agent = None,
|
||||||
tracer: dict = {},
|
tracer: dict = {},
|
||||||
):
|
):
|
||||||
|
@ -477,6 +478,7 @@ async def extract_references_and_questions(
|
||||||
)
|
)
|
||||||
|
|
||||||
# Collate search results as context for GPT
|
# Collate search results as context for GPT
|
||||||
|
inferred_queries = list(set(inferred_queries) - previous_inferred_queries)
|
||||||
with timer("Searching knowledge base took", logger):
|
with timer("Searching knowledge base took", logger):
|
||||||
search_results = []
|
search_results = []
|
||||||
logger.info(f"🔍 Searching knowledge base with queries: {inferred_queries}")
|
logger.info(f"🔍 Searching knowledge base with queries: {inferred_queries}")
|
||||||
|
|
|
@ -778,7 +778,8 @@ async def chat(
|
||||||
yield research_result
|
yield research_result
|
||||||
|
|
||||||
# researched_results = await extract_relevant_info(q, researched_results, agent)
|
# researched_results = await extract_relevant_info(q, researched_results, agent)
|
||||||
logger.info(f"Researched Results: {researched_results}")
|
if state.verbose > 1:
|
||||||
|
logger.debug(f"Researched Results: {researched_results}")
|
||||||
|
|
||||||
used_slash_summarize = conversation_commands == [ConversationCommand.Summarize]
|
used_slash_summarize = conversation_commands == [ConversationCommand.Summarize]
|
||||||
file_filters = conversation.file_filters if conversation else []
|
file_filters = conversation.file_filters if conversation else []
|
||||||
|
|
|
@ -20,6 +20,7 @@ from typing import (
|
||||||
Iterator,
|
Iterator,
|
||||||
List,
|
List,
|
||||||
Optional,
|
Optional,
|
||||||
|
Set,
|
||||||
Tuple,
|
Tuple,
|
||||||
Union,
|
Union,
|
||||||
)
|
)
|
||||||
|
@ -494,7 +495,7 @@ async def generate_online_subqueries(
|
||||||
query_images: List[str] = None,
|
query_images: List[str] = None,
|
||||||
agent: Agent = None,
|
agent: Agent = None,
|
||||||
tracer: dict = {},
|
tracer: dict = {},
|
||||||
) -> List[str]:
|
) -> Set[str]:
|
||||||
"""
|
"""
|
||||||
Generate subqueries from the given query
|
Generate subqueries from the given query
|
||||||
"""
|
"""
|
||||||
|
@ -529,14 +530,14 @@ async def generate_online_subqueries(
|
||||||
try:
|
try:
|
||||||
response = clean_json(response)
|
response = clean_json(response)
|
||||||
response = json.loads(response)
|
response = json.loads(response)
|
||||||
response = [q.strip() for q in response["queries"] if q.strip()]
|
response = {q.strip() for q in response["queries"] if q.strip()}
|
||||||
if not isinstance(response, list) or not response or len(response) == 0:
|
if not isinstance(response, set) or not response or len(response) == 0:
|
||||||
logger.error(f"Invalid response for constructing subqueries: {response}. Returning original query: {q}")
|
logger.error(f"Invalid response for constructing subqueries: {response}. Returning original query: {q}")
|
||||||
return [q]
|
return {q}
|
||||||
return response
|
return response
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Invalid response for constructing subqueries: {response}. Returning original query: {q}")
|
logger.error(f"Invalid response for constructing subqueries: {response}. Returning original query: {q}")
|
||||||
return [q]
|
return {q}
|
||||||
|
|
||||||
|
|
||||||
async def schedule_query(
|
async def schedule_query(
|
||||||
|
@ -1128,9 +1129,6 @@ def generate_chat_response(
|
||||||
|
|
||||||
metadata = {}
|
metadata = {}
|
||||||
agent = AgentAdapters.get_conversation_agent_by_id(conversation.agent.id) if conversation.agent else None
|
agent = AgentAdapters.get_conversation_agent_by_id(conversation.agent.id) if conversation.agent else None
|
||||||
query_to_run = q
|
|
||||||
if meta_research:
|
|
||||||
query_to_run = f"AI Research: {meta_research} {q}"
|
|
||||||
try:
|
try:
|
||||||
partial_completion = partial(
|
partial_completion = partial(
|
||||||
save_to_conversation_log,
|
save_to_conversation_log,
|
||||||
|
@ -1148,6 +1146,13 @@ def generate_chat_response(
|
||||||
train_of_thought=train_of_thought,
|
train_of_thought=train_of_thought,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
query_to_run = q
|
||||||
|
if meta_research:
|
||||||
|
query_to_run = f"<query>{q}</query>\n<collected_research>\n{meta_research}\n</collected_research>"
|
||||||
|
compiled_references = []
|
||||||
|
online_results = {}
|
||||||
|
code_results = {}
|
||||||
|
|
||||||
conversation_config = ConversationAdapters.get_valid_conversation_config(user, conversation)
|
conversation_config = ConversationAdapters.get_valid_conversation_config(user, conversation)
|
||||||
vision_available = conversation_config.vision_enabled
|
vision_available = conversation_config.vision_enabled
|
||||||
if not vision_available and query_images:
|
if not vision_available and query_images:
|
||||||
|
|
|
@ -43,38 +43,35 @@ async def apick_next_tool(
|
||||||
location: LocationData = None,
|
location: LocationData = None,
|
||||||
user_name: str = None,
|
user_name: str = None,
|
||||||
agent: Agent = None,
|
agent: Agent = None,
|
||||||
previous_iterations_history: str = None,
|
previous_iterations: List[InformationCollectionIteration] = [],
|
||||||
max_iterations: int = 5,
|
max_iterations: int = 5,
|
||||||
send_status_func: Optional[Callable] = None,
|
send_status_func: Optional[Callable] = None,
|
||||||
tracer: dict = {},
|
tracer: dict = {},
|
||||||
):
|
):
|
||||||
"""
|
"""Given a query, determine which of the available tools the agent should use in order to answer appropriately."""
|
||||||
Given a query, determine which of the available tools the agent should use in order to answer appropriately. One at a time, and it's able to use subsequent iterations to refine the answer.
|
|
||||||
"""
|
|
||||||
|
|
||||||
|
# Construct tool options for the agent to choose from
|
||||||
tool_options = dict()
|
tool_options = dict()
|
||||||
tool_options_str = ""
|
tool_options_str = ""
|
||||||
|
|
||||||
agent_tools = agent.input_tools if agent else []
|
agent_tools = agent.input_tools if agent else []
|
||||||
|
|
||||||
for tool, description in function_calling_description_for_llm.items():
|
for tool, description in function_calling_description_for_llm.items():
|
||||||
tool_options[tool.value] = description
|
tool_options[tool.value] = description
|
||||||
if len(agent_tools) == 0 or tool.value in agent_tools:
|
if len(agent_tools) == 0 or tool.value in agent_tools:
|
||||||
tool_options_str += f'- "{tool.value}": "{description}"\n'
|
tool_options_str += f'- "{tool.value}": "{description}"\n'
|
||||||
|
|
||||||
|
# Construct chat history with user and iteration history with researcher agent for context
|
||||||
chat_history = construct_chat_history(conversation_history, agent_name=agent.name if agent else "Khoj")
|
chat_history = construct_chat_history(conversation_history, agent_name=agent.name if agent else "Khoj")
|
||||||
|
previous_iterations_history = construct_iteration_history(previous_iterations, prompts.previous_iteration)
|
||||||
|
|
||||||
if query_images:
|
if query_images:
|
||||||
query = f"[placeholder for user attached images]\n{query}"
|
query = f"[placeholder for user attached images]\n{query}"
|
||||||
|
|
||||||
|
today = datetime.today()
|
||||||
|
location_data = f"{location}" if location else "Unknown"
|
||||||
personality_context = (
|
personality_context = (
|
||||||
prompts.personality_context.format(personality=agent.personality) if agent and agent.personality else ""
|
prompts.personality_context.format(personality=agent.personality) if agent and agent.personality else ""
|
||||||
)
|
)
|
||||||
|
|
||||||
# Extract Past User Message and Inferred Questions from Conversation Log
|
|
||||||
today = datetime.today()
|
|
||||||
location_data = f"{location}" if location else "Unknown"
|
|
||||||
|
|
||||||
function_planning_prompt = prompts.plan_function_execution.format(
|
function_planning_prompt = prompts.plan_function_execution.format(
|
||||||
tools=tool_options_str,
|
tools=tool_options_str,
|
||||||
chat_history=chat_history,
|
chat_history=chat_history,
|
||||||
|
@ -112,8 +109,15 @@ async def apick_next_tool(
|
||||||
selected_tool = response.get("tool", None)
|
selected_tool = response.get("tool", None)
|
||||||
generated_query = response.get("query", None)
|
generated_query = response.get("query", None)
|
||||||
scratchpad = response.get("scratchpad", None)
|
scratchpad = response.get("scratchpad", None)
|
||||||
|
warning = None
|
||||||
logger.info(f"Response for determining relevant tools: {response}")
|
logger.info(f"Response for determining relevant tools: {response}")
|
||||||
if send_status_func:
|
|
||||||
|
# Detect selection of previously used query, tool combination.
|
||||||
|
previous_tool_query_combinations = {(i.tool, i.query) for i in previous_iterations}
|
||||||
|
if (selected_tool, generated_query) in previous_tool_query_combinations:
|
||||||
|
warning = f"Repeated tool, query combination detected. Skipping iteration. Try something different."
|
||||||
|
# Only send client status updates if we'll execute this iteration
|
||||||
|
elif send_status_func:
|
||||||
determined_tool_message = "**Determined Tool**: "
|
determined_tool_message = "**Determined Tool**: "
|
||||||
determined_tool_message += f"{selected_tool}({generated_query})." if selected_tool else "respond."
|
determined_tool_message += f"{selected_tool}({generated_query})." if selected_tool else "respond."
|
||||||
determined_tool_message += f"\nReason: {scratchpad}" if scratchpad else ""
|
determined_tool_message += f"\nReason: {scratchpad}" if scratchpad else ""
|
||||||
|
@ -123,13 +127,14 @@ async def apick_next_tool(
|
||||||
yield InformationCollectionIteration(
|
yield InformationCollectionIteration(
|
||||||
tool=selected_tool,
|
tool=selected_tool,
|
||||||
query=generated_query,
|
query=generated_query,
|
||||||
|
warning=warning,
|
||||||
)
|
)
|
||||||
|
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
logger.error(f"Invalid response for determining relevant tools: {response}. {e}", exc_info=True)
|
logger.error(f"Invalid response for determining relevant tools: {response}. {e}", exc_info=True)
|
||||||
yield InformationCollectionIteration(
|
yield InformationCollectionIteration(
|
||||||
tool=None,
|
tool=None,
|
||||||
query=None,
|
query=None,
|
||||||
|
warning=f"Invalid response for determining relevant tools: {response}. Skipping iteration. Fix error: {e}",
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
@ -156,7 +161,6 @@ async def execute_information_collection(
|
||||||
document_results: List[Dict[str, str]] = []
|
document_results: List[Dict[str, str]] = []
|
||||||
summarize_files: str = ""
|
summarize_files: str = ""
|
||||||
this_iteration = InformationCollectionIteration(tool=None, query=query)
|
this_iteration = InformationCollectionIteration(tool=None, query=query)
|
||||||
previous_iterations_history = construct_iteration_history(previous_iterations, prompts.previous_iteration)
|
|
||||||
|
|
||||||
async for result in apick_next_tool(
|
async for result in apick_next_tool(
|
||||||
query,
|
query,
|
||||||
|
@ -166,7 +170,7 @@ async def execute_information_collection(
|
||||||
location,
|
location,
|
||||||
user_name,
|
user_name,
|
||||||
agent,
|
agent,
|
||||||
previous_iterations_history,
|
previous_iterations,
|
||||||
MAX_ITERATIONS,
|
MAX_ITERATIONS,
|
||||||
send_status_func,
|
send_status_func,
|
||||||
tracer=tracer,
|
tracer=tracer,
|
||||||
|
@ -176,9 +180,16 @@ async def execute_information_collection(
|
||||||
elif isinstance(result, InformationCollectionIteration):
|
elif isinstance(result, InformationCollectionIteration):
|
||||||
this_iteration = result
|
this_iteration = result
|
||||||
|
|
||||||
if this_iteration.tool == ConversationCommand.Notes:
|
# Skip running iteration if warning present in iteration
|
||||||
|
if this_iteration.warning:
|
||||||
|
logger.warning(f"Research mode: {this_iteration.warning}.")
|
||||||
|
|
||||||
|
elif this_iteration.tool == ConversationCommand.Notes:
|
||||||
this_iteration.context = []
|
this_iteration.context = []
|
||||||
document_results = []
|
document_results = []
|
||||||
|
previous_inferred_queries = {
|
||||||
|
c["query"] for iteration in previous_iterations if iteration.context for c in iteration.context
|
||||||
|
}
|
||||||
async for result in extract_references_and_questions(
|
async for result in extract_references_and_questions(
|
||||||
request,
|
request,
|
||||||
construct_tool_chat_history(previous_iterations, ConversationCommand.Notes),
|
construct_tool_chat_history(previous_iterations, ConversationCommand.Notes),
|
||||||
|
@ -190,6 +201,7 @@ async def execute_information_collection(
|
||||||
location,
|
location,
|
||||||
send_status_func,
|
send_status_func,
|
||||||
query_images,
|
query_images,
|
||||||
|
previous_inferred_queries=previous_inferred_queries,
|
||||||
agent=agent,
|
agent=agent,
|
||||||
tracer=tracer,
|
tracer=tracer,
|
||||||
):
|
):
|
||||||
|
@ -213,6 +225,12 @@ async def execute_information_collection(
|
||||||
logger.error(f"Error extracting document references: {e}", exc_info=True)
|
logger.error(f"Error extracting document references: {e}", exc_info=True)
|
||||||
|
|
||||||
elif this_iteration.tool == ConversationCommand.Online:
|
elif this_iteration.tool == ConversationCommand.Online:
|
||||||
|
previous_subqueries = {
|
||||||
|
subquery
|
||||||
|
for iteration in previous_iterations
|
||||||
|
if iteration.onlineContext
|
||||||
|
for subquery in iteration.onlineContext.keys()
|
||||||
|
}
|
||||||
async for result in search_online(
|
async for result in search_online(
|
||||||
this_iteration.query,
|
this_iteration.query,
|
||||||
construct_tool_chat_history(previous_iterations, ConversationCommand.Online),
|
construct_tool_chat_history(previous_iterations, ConversationCommand.Online),
|
||||||
|
@ -222,11 +240,16 @@ async def execute_information_collection(
|
||||||
[],
|
[],
|
||||||
max_webpages_to_read=0,
|
max_webpages_to_read=0,
|
||||||
query_images=query_images,
|
query_images=query_images,
|
||||||
|
previous_subqueries=previous_subqueries,
|
||||||
agent=agent,
|
agent=agent,
|
||||||
tracer=tracer,
|
tracer=tracer,
|
||||||
):
|
):
|
||||||
if isinstance(result, dict) and ChatEvent.STATUS in result:
|
if isinstance(result, dict) and ChatEvent.STATUS in result:
|
||||||
yield result[ChatEvent.STATUS]
|
yield result[ChatEvent.STATUS]
|
||||||
|
elif is_none_or_empty(result):
|
||||||
|
this_iteration.warning = (
|
||||||
|
"Detected previously run online search queries. Skipping iteration. Try something different."
|
||||||
|
)
|
||||||
else:
|
else:
|
||||||
online_results: Dict[str, Dict] = result # type: ignore
|
online_results: Dict[str, Dict] = result # type: ignore
|
||||||
this_iteration.onlineContext = online_results
|
this_iteration.onlineContext = online_results
|
||||||
|
@ -311,16 +334,19 @@ async def execute_information_collection(
|
||||||
|
|
||||||
current_iteration += 1
|
current_iteration += 1
|
||||||
|
|
||||||
if document_results or online_results or code_results or summarize_files:
|
if document_results or online_results or code_results or summarize_files or this_iteration.warning:
|
||||||
results_data = f"**Results**:\n"
|
results_data = f"\n<iteration>{current_iteration}\n<tool>{this_iteration.tool}</tool>\n<query>{this_iteration.query}</query>\n<results>"
|
||||||
if document_results:
|
if document_results:
|
||||||
results_data += f"**Document References**:\n{yaml.dump(document_results, allow_unicode=True, sort_keys=False, default_flow_style=False)}\n"
|
results_data += f"\n<document_references>\n{yaml.dump(document_results, allow_unicode=True, sort_keys=False, default_flow_style=False)}\n</document_references>"
|
||||||
if online_results:
|
if online_results:
|
||||||
results_data += f"**Online Results**:\n{yaml.dump(online_results, allow_unicode=True, sort_keys=False, default_flow_style=False)}\n"
|
results_data += f"\n<online_results>\n{yaml.dump(online_results, allow_unicode=True, sort_keys=False, default_flow_style=False)}\n</online_results>"
|
||||||
if code_results:
|
if code_results:
|
||||||
results_data += f"**Code Results**:\n{yaml.dump(code_results, allow_unicode=True, sort_keys=False, default_flow_style=False)}\n"
|
results_data += f"\n<code_results>\n{yaml.dump(code_results, allow_unicode=True, sort_keys=False, default_flow_style=False)}\n</code_results>"
|
||||||
if summarize_files:
|
if summarize_files:
|
||||||
results_data += f"**Summarized Files**:\n{yaml.dump(summarize_files, allow_unicode=True, sort_keys=False, default_flow_style=False)}\n"
|
results_data += f"\n<summarized_files>\n{yaml.dump(summarize_files, allow_unicode=True, sort_keys=False, default_flow_style=False)}\n</summarized_files>"
|
||||||
|
if this_iteration.warning:
|
||||||
|
results_data += f"\n<warning>\n{this_iteration.warning}\n</warning>"
|
||||||
|
results_data += "\n</results>\n</iteration>"
|
||||||
|
|
||||||
# intermediate_result = await extract_relevant_info(this_iteration.query, results_data, agent)
|
# intermediate_result = await extract_relevant_info(this_iteration.query, results_data, agent)
|
||||||
this_iteration.summarizedResult = results_data
|
this_iteration.summarizedResult = results_data
|
||||||
|
|
Loading…
Reference in a new issue