Merge branch 'master' of github.com:khoj-ai/khoj into features/big-upgrade-chat-ux

This commit is contained in:
sabaimran 2024-07-27 14:18:05 +05:30
commit 1a1d9c7257
46 changed files with 1598 additions and 1394 deletions

View file

@ -27,7 +27,7 @@ jobs:
permissions:
id-token: write
steps:
- uses: actions/checkout@v3
- uses: actions/checkout@v4
with:
fetch-depth: 0
@ -36,16 +36,12 @@ jobs:
with:
python-version: '3.11'
- name: ⬇️ Install Application
- name: ⬇️ Install Server
run: python -m pip install --upgrade pip && pip install --upgrade .
- name: Install the Next.js application
- name: ⬇️ Install Web Client
run: |
yarn install
working-directory: src/interface/web
- name: Build & export static Next.js app to Django static assets
run: |
yarn ciexport
working-directory: src/interface/web
@ -56,7 +52,12 @@ jobs:
export SOURCE_DATE_EPOCH=$(git log -1 --pretty=%ct)
rm -rf dist
# Build PyPi Package
# Build PyPI Package: khoj
pipx run build
# Build legacy PyPI Package: khoj-assistant
sed -i.bak '/^name = "khoj"$/s//name = "khoj-assistant"/' pyproject.toml
rm pyproject.toml.bak
pipx run build
- name: 🌡️ Validate Python Package
@ -66,11 +67,11 @@ jobs:
pipx run twine check dist/*
- name: ⏫ Upload Python Package Artifacts
uses: actions/upload-artifact@v3
uses: actions/upload-artifact@v4
with:
name: khoj-assistant
path: dist/*.whl
name: khoj
path: dist/khoj-*.whl
- name: 📦 Publish Python Package to PyPI
- name: 📦 Publish Python Packages to PyPI
if: startsWith(github.ref, 'refs/tags') || github.ref == 'refs/heads/master'
uses: pypa/gh-action-pypi-publish@v1.8.14

View file

@ -1,12 +1,14 @@
# syntax=docker/dockerfile:1
FROM ubuntu:jammy
LABEL org.opencontainers.image.source https://github.com/khoj-ai/khoj
LABEL homepage="https://khoj.dev"
LABEL repository="https://github.com/khoj-ai/khoj"
LABEL org.opencontainers.image.source="https://github.com/khoj-ai/khoj"
# Install System Dependencies
RUN apt update -y && apt -y install python3-pip swig curl
# Install Node.js and Yarn
RUN curl -sL https://deb.nodesource.com/setup_22.x | bash -
RUN curl -sL https://deb.nodesource.com/setup_20.x | bash -
RUN apt -y install nodejs
RUN curl -sS https://dl.yarnpkg.com/debian/pubkey.gpg | apt-key add -
RUN echo "deb https://dl.yarnpkg.com/debian/ stable main" | tee /etc/apt/sources.list.d/yarn.list
@ -31,7 +33,7 @@ ENV PYTHONPATH=/app/src:$PYTHONPATH
# Go to the directory src/interface/web and export the built Next.js assets
WORKDIR /app/src/interface/web
RUN bash -c "yarn install && yarn ciexport"
RUN bash -c "yarn cache clean && yarn install --verbose && yarn ciexport"
WORKDIR /app
# Run the Application

View file

@ -4,7 +4,7 @@
[![test](https://github.com/khoj-ai/khoj/actions/workflows/test.yml/badge.svg)](https://github.com/khoj-ai/khoj/actions/workflows/test.yml)
[![dockerize](https://github.com/khoj-ai/khoj/actions/workflows/dockerize.yml/badge.svg)](https://github.com/khoj-ai/khoj/pkgs/container/khoj)
[![pypi](https://github.com/khoj-ai/khoj/actions/workflows/pypi.yml/badge.svg)](https://pypi.org/project/khoj-assistant/)
[![pypi](https://github.com/khoj-ai/khoj/actions/workflows/pypi.yml/badge.svg)](https://pypi.org/project/khoj/)
![Discord](https://img.shields.io/discord/1112065956647284756?style=plastic&label=discord)
</div>

View file

@ -41,7 +41,7 @@ To set up your self-hosted Khoj with Google Auth, you need to create a project i
To implement this, you'll need to:
1. You must use the `python` package or build from source, because you'll need to install additional packages for the google auth libraries (`prod`). The syntax to install the right packages is
```
pip install khoj-assistant[prod]
pip install khoj[prod]
```
2. [Create authorization credentials](https://developers.google.com/identity/sign-in/web/sign-in) for your application.
3. Open your [Google cloud console](https://console.developers.google.com/apis/credentials) and create a configuration like below for the relevant `OAuth 2.0 Client IDs` project:

View file

@ -229,7 +229,7 @@ The core code for the Obsidian plugin is under `src/interface/obsidian`. The fil
4. Open the `khoj` folder in the file explorer that opens. You'll see a file called `main.js` in this folder. To test your changes, replace this file with the `main.js` file that was generated by the development server in the previous section.
## Create Khoj Release (Only for Maintainers)
Follow the steps below to [release](https://github.com/debanjum/khoj/releases/) Khoj. This will create a stable release of Khoj on [Pypi](https://pypi.org/project/khoj-assistant/), [Melpa](https://stable.melpa.org/#%252Fkhoj) and [Obsidian](https://obsidian.md/plugins?id%253Dkhoj). It will also create desktop apps of Khoj and attach them to the latest release.
Follow the steps below to [release](https://github.com/debanjum/khoj/releases/) Khoj. This will create a stable release of Khoj on [Pypi](https://pypi.org/project/khoj/), [Melpa](https://stable.melpa.org/#%252Fkhoj) and [Obsidian](https://obsidian.md/plugins?id%253Dkhoj). It will also create desktop apps of Khoj and attach them to the latest release.
1. Create and tag release commit by running the bump_version script. The release commit sets version number in required metadata files.
```shell

View file

@ -105,10 +105,10 @@ Run the following command in your terminal to install the Khoj server.
<TabItem value="macos" label="MacOS">
```shell
# ARM/M1+ Machines
MAKE_ARGS="-DLLAMA_METAL=on" python -m pip install khoj-assistant
MAKE_ARGS="-DLLAMA_METAL=on" python -m pip install khoj
# Intel Machines
python -m pip install khoj-assistant
python -m pip install khoj
```
</TabItem>
<TabItem value="win" label="Windows">
@ -122,19 +122,19 @@ python -m pip install khoj-assistant
$env:CMAKE_ARGS = "-DLLAMA_VULKAN=on"
# 2. Install Khoj
py -m pip install khoj-assistant
py -m pip install khoj
```
</TabItem>
<TabItem value="unix" label="Linux">
```shell
# CPU
python -m pip install khoj-assistant
python -m pip install khoj
# NVIDIA (CUDA) GPU
CMAKE_ARGS="DLLAMA_CUDA=on" FORCE_CMAKE=1 python -m pip install khoj-assistant
CMAKE_ARGS="DLLAMA_CUDA=on" FORCE_CMAKE=1 python -m pip install khoj
# AMD (ROCm) GPU
CMAKE_ARGS="-DLLAMA_HIPBLAS=on" FORCE_CMAKE=1 python -m pip install khoj-assistant
CMAKE_ARGS="-DLLAMA_HIPBLAS=on" FORCE_CMAKE=1 python -m pip install khoj
# VULCAN GPU
CMAKE_ARGS="-DLLAMA_VULKAN=on" FORCE_CMAKE=1 python -m pip install khoj-assistant
CMAKE_ARGS="-DLLAMA_VULKAN=on" FORCE_CMAKE=1 python -m pip install khoj
```
</TabItem>
</Tabs>
@ -257,7 +257,7 @@ Set the host URL on your clients settings page to your Khoj server URL. By defau
<Tabs groupId="environment">
<TabItem value="localsetup" label="Local Setup">
```shell
pip install --upgrade khoj-assistant
pip install --upgrade khoj
```
*Note: To upgrade to the latest pre-release version of the khoj server run below command*
</TabItem>
@ -285,7 +285,7 @@ Set the host URL on your clients settings page to your Khoj server URL. By defau
<TabItem value="localsetup" label="Local Setup">
```shell
# uninstall khoj server
pip uninstall khoj-assistant
pip uninstall khoj
# delete khoj postgres db
dropdb khoj -U postgres
@ -318,13 +318,13 @@ Set the host URL on your clients settings page to your Khoj server URL. By defau
1. Install [pipx](https://pypa.github.io/pipx/#install-pipx)
2. Use `pipx` to install Khoj to avoid dependency conflicts with other python packages.
```shell
pipx install khoj-assistant
pipx install khoj
```
3. Now start `khoj` using the standard steps described earlier
#### Install fails while building Tokenizer dependency
- **Details**: `pip install khoj-assistant` fails while building the `tokenizers` dependency. Complains about Rust.
- **Details**: `pip install khoj` fails while building the `tokenizers` dependency. Complains about Rust.
- **Fix**: Install Rust to build the tokenizers package. For example on Mac run:
```shell
brew install rustup

View file

@ -1,7 +1,7 @@
{
"id": "khoj",
"name": "Khoj",
"version": "1.16.0",
"version": "1.17.0",
"minAppVersion": "0.15.0",
"description": "An AI copilot for your Second Brain",
"author": "Khoj Inc.",

View file

@ -1,12 +1,12 @@
FROM ubuntu:jammy
LABEL org.opencontainers.image.source https://github.com/khoj-ai/khoj
LABEL org.opencontainers.image.source="https://github.com/khoj-ai/khoj"
# Install System Dependencies
RUN apt update -y && apt -y install python3-pip libsqlite3-0 ffmpeg libsm6 libxext6 swig curl
# Install Node.js and Yarn
RUN curl -sL https://deb.nodesource.com/setup_22.x | bash -
RUN curl -sL https://deb.nodesource.com/setup_20.x | bash -
RUN apt -y install nodejs
RUN curl -sS https://dl.yarnpkg.com/debian/pubkey.gpg | apt-key add -
RUN echo "deb https://dl.yarnpkg.com/debian/ stable main" | tee /etc/apt/sources.list.d/yarn.list
@ -29,7 +29,7 @@ ENV PYTHONPATH=/app/src:$PYTHONPATH
# Go to the directory src/interface/web and export the built Next.js assets
WORKDIR /app/src/interface/web
RUN bash -c "yarn install && yarn ciexport"
RUN bash -c "yarn cache clean && yarn install --verbose && yarn ciexport"
WORKDIR /app
# Run the Application

View file

@ -3,7 +3,7 @@ requires = ["hatchling", "hatch-vcs"]
build-backend = "hatchling.build"
[project]
name = "khoj-assistant"
name = "khoj"
description = "An AI copilot for your Second Brain"
readme = "README.md"
license = "AGPL-3.0-or-later"
@ -27,7 +27,6 @@ classifiers = [
"License :: OSI Approved :: GNU Affero General Public License v3 or later (AGPLv3+)",
"Operating System :: OS Independent",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Programming Language :: Python :: 3.11",
"Programming Language :: Python :: 3.12",
@ -67,7 +66,7 @@ dependencies = [
"pymupdf >= 1.23.5",
"django == 5.0.7",
"authlib == 1.2.1",
"llama-cpp-python == 0.2.76",
"llama-cpp-python == 0.2.82",
"itsdangerous == 2.1.2",
"httpx == 0.25.0",
"pgvector == 0.2.4",
@ -110,7 +109,7 @@ prod = [
"resend == 1.0.1",
]
dev = [
"khoj-assistant[prod]",
"khoj[prod]",
"pytest >= 7.1.2",
"pytest-xdist[psutil]",
"pytest-django == 4.5.2",

View file

@ -61,6 +61,14 @@
let city = null;
let countryName = null;
let timezone = null;
let chatMessageState = {
newResponseTextEl: null,
newResponseEl: null,
loadingEllipsis: null,
references: {},
rawResponse: "",
isVoice: false,
}
fetch("https://ipapi.co/json")
.then(response => response.json())
@ -75,10 +83,9 @@
return;
});
async function chat() {
// Extract required fields for search from form
async function chat(isVoice=false) {
// Extract chat message from chat input form
let query = document.getElementById("chat-input").value.trim();
let resultsCount = localStorage.getItem("khojResultsCount") || 5;
console.log(`Query: ${query}`);
// Short circuit on empty query
@ -106,9 +113,6 @@
await refreshChatSessionsPanel();
}
// Generate backend API URL to execute query
let chatApi = `${hostURL}/api/chat?q=${encodeURIComponent(query)}&n=${resultsCount}&client=web&stream=true&conversation_id=${conversationID}&region=${region}&city=${city}&country=${countryName}&timezone=${timezone}`;
let newResponseEl = document.createElement("div");
newResponseEl.classList.add("chat-message", "khoj");
newResponseEl.attributes["data-meta"] = "🏮 Khoj at " + formatDate(new Date());
@ -119,25 +123,7 @@
newResponseEl.appendChild(newResponseTextEl);
// Temporary status message to indicate that Khoj is thinking
let loadingEllipsis = document.createElement("div");
loadingEllipsis.classList.add("lds-ellipsis");
let firstEllipsis = document.createElement("div");
firstEllipsis.classList.add("lds-ellipsis-item");
let secondEllipsis = document.createElement("div");
secondEllipsis.classList.add("lds-ellipsis-item");
let thirdEllipsis = document.createElement("div");
thirdEllipsis.classList.add("lds-ellipsis-item");
let fourthEllipsis = document.createElement("div");
fourthEllipsis.classList.add("lds-ellipsis-item");
loadingEllipsis.appendChild(firstEllipsis);
loadingEllipsis.appendChild(secondEllipsis);
loadingEllipsis.appendChild(thirdEllipsis);
loadingEllipsis.appendChild(fourthEllipsis);
let loadingEllipsis = createLoadingEllipsis();
newResponseTextEl.appendChild(loadingEllipsis);
document.getElementById("chat-body").scrollTop = document.getElementById("chat-body").scrollHeight;
@ -148,107 +134,36 @@
let chatInput = document.getElementById("chat-input");
chatInput.classList.remove("option-enabled");
// Setup chat message state
chatMessageState = {
newResponseTextEl,
newResponseEl,
loadingEllipsis,
references: {},
rawResponse: "",
rawQuery: query,
isVoice: isVoice,
}
// Call Khoj chat API
let response = await fetch(chatApi, { headers });
let rawResponse = "";
let references = null;
const contentType = response.headers.get("content-type");
let chatApi = `${hostURL}/api/chat?q=${encodeURIComponent(query)}&conversation_id=${conversationID}&stream=true&client=desktop`;
chatApi += (!!region && !!city && !!countryName && !!timezone)
? `&region=${region}&city=${city}&country=${countryName}&timezone=${timezone}`
: '';
if (contentType === "application/json") {
// Handle JSON response
try {
const responseAsJson = await response.json();
if (responseAsJson.image) {
// If response has image field, response is a generated image.
if (responseAsJson.intentType === "text-to-image") {
rawResponse += `![${query}](data:image/png;base64,${responseAsJson.image})`;
} else if (responseAsJson.intentType === "text-to-image2") {
rawResponse += `![${query}](${responseAsJson.image})`;
} else if (responseAsJson.intentType === "text-to-image-v3") {
rawResponse += `![${query}](data:image/webp;base64,${responseAsJson.image})`;
}
const inferredQueries = responseAsJson.inferredQueries?.[0];
if (inferredQueries) {
rawResponse += `\n\n**Inferred Query**:\n\n${inferredQueries}`;
}
}
if (responseAsJson.context) {
const rawReferenceAsJson = responseAsJson.context;
references = createReferenceSection(rawReferenceAsJson);
}
if (responseAsJson.detail) {
// If response has detail field, response is an error message.
rawResponse += responseAsJson.detail;
}
} catch (error) {
// If the chunk is not a JSON object, just display it as is
rawResponse += chunk;
} finally {
newResponseTextEl.innerHTML = "";
newResponseTextEl.appendChild(formatHTMLMessage(rawResponse));
const response = await fetch(chatApi, { headers });
if (references != null) {
newResponseTextEl.appendChild(references);
}
document.getElementById("chat-body").scrollTop = document.getElementById("chat-body").scrollHeight;
document.getElementById("chat-input").removeAttribute("disabled");
}
} else {
// Handle streamed response of type text/event-stream or text/plain
const reader = response.body.getReader();
const decoder = new TextDecoder();
let references = {};
readStream();
function readStream() {
reader.read().then(({ done, value }) => {
if (done) {
// Append any references after all the data has been streamed
if (references != {}) {
newResponseTextEl.appendChild(createReferenceSection(references));
}
document.getElementById("chat-body").scrollTop = document.getElementById("chat-body").scrollHeight;
document.getElementById("chat-input").removeAttribute("disabled");
return;
}
// Decode message chunk from stream
const chunk = decoder.decode(value, { stream: true });
if (chunk.includes("### compiled references:")) {
const additionalResponse = chunk.split("### compiled references:")[0];
rawResponse += additionalResponse;
newResponseTextEl.innerHTML = "";
newResponseTextEl.appendChild(formatHTMLMessage(rawResponse));
const rawReference = chunk.split("### compiled references:")[1];
const rawReferenceAsJson = JSON.parse(rawReference);
if (rawReferenceAsJson instanceof Array) {
references["notes"] = rawReferenceAsJson;
} else if (typeof rawReferenceAsJson === "object" && rawReferenceAsJson !== null) {
references["online"] = rawReferenceAsJson;
}
readStream();
} else {
// Display response from Khoj
if (newResponseTextEl.getElementsByClassName("lds-ellipsis").length > 0) {
newResponseTextEl.removeChild(loadingEllipsis);
}
// If the chunk is not a JSON object, just display it as is
rawResponse += chunk;
newResponseTextEl.innerHTML = "";
newResponseTextEl.appendChild(formatHTMLMessage(rawResponse));
readStream();
}
// Scroll to bottom of chat window as chat response is streamed
document.getElementById("chat-body").scrollTop = document.getElementById("chat-body").scrollHeight;
});
}
try {
if (!response.ok) throw new Error(response.statusText);
if (!response.body) throw new Error("Response body is empty");
// Stream and render chat response
await readChatStream(response);
} catch (err) {
console.error(`Khoj chat response failed with\n${err}`);
if (chatMessageState.newResponseEl.getElementsByClassName("lds-ellipsis").length > 0 && chatMessageState.loadingEllipsis)
chatMessageState.newResponseTextEl.removeChild(chatMessageState.loadingEllipsis);
let errorMsg = "Sorry, unable to get response from Khoj backend ❤️‍🩹. Retry or contact developers for help at <a href=mailto:'team@khoj.dev'>team@khoj.dev</a> or <a href='https://discord.gg/BDgyabRM6e'>on Discord</a>";
newResponseTextEl.textContent = errorMsg;
}
}

View file

@ -364,3 +364,194 @@ function createReferenceSection(references, createLinkerSection=false) {
return referencesDiv;
}
function createLoadingEllipsis() {
let loadingEllipsis = document.createElement("div");
loadingEllipsis.classList.add("lds-ellipsis");
let firstEllipsis = document.createElement("div");
firstEllipsis.classList.add("lds-ellipsis-item");
let secondEllipsis = document.createElement("div");
secondEllipsis.classList.add("lds-ellipsis-item");
let thirdEllipsis = document.createElement("div");
thirdEllipsis.classList.add("lds-ellipsis-item");
let fourthEllipsis = document.createElement("div");
fourthEllipsis.classList.add("lds-ellipsis-item");
loadingEllipsis.appendChild(firstEllipsis);
loadingEllipsis.appendChild(secondEllipsis);
loadingEllipsis.appendChild(thirdEllipsis);
loadingEllipsis.appendChild(fourthEllipsis);
return loadingEllipsis;
}
function handleStreamResponse(newResponseElement, rawResponse, rawQuery, loadingEllipsis, replace=true) {
if (!newResponseElement) return;
// Remove loading ellipsis if it exists
if (newResponseElement.getElementsByClassName("lds-ellipsis").length > 0 && loadingEllipsis)
newResponseElement.removeChild(loadingEllipsis);
// Clear the response element if replace is true
if (replace) newResponseElement.innerHTML = "";
// Append response to the response element
newResponseElement.appendChild(formatHTMLMessage(rawResponse, false, replace, rawQuery));
// Append loading ellipsis if it exists
if (!replace && loadingEllipsis) newResponseElement.appendChild(loadingEllipsis);
// Scroll to bottom of chat view
document.getElementById("chat-body").scrollTop = document.getElementById("chat-body").scrollHeight;
}
function handleImageResponse(imageJson, rawResponse) {
if (imageJson.image) {
const inferredQuery = imageJson.inferredQueries?.[0] ?? "generated image";
// If response has image field, response is a generated image.
if (imageJson.intentType === "text-to-image") {
rawResponse += `![generated_image](data:image/png;base64,${imageJson.image})`;
} else if (imageJson.intentType === "text-to-image2") {
rawResponse += `![generated_image](${imageJson.image})`;
} else if (imageJson.intentType === "text-to-image-v3") {
rawResponse = `![](data:image/webp;base64,${imageJson.image})`;
}
if (inferredQuery) {
rawResponse += `\n\n**Inferred Query**:\n\n${inferredQuery}`;
}
}
// If response has detail field, response is an error message.
if (imageJson.detail) rawResponse += imageJson.detail;
return rawResponse;
}
function finalizeChatBodyResponse(references, newResponseElement) {
if (!!newResponseElement && references != null && Object.keys(references).length > 0) {
newResponseElement.appendChild(createReferenceSection(references));
}
document.getElementById("chat-body").scrollTop = document.getElementById("chat-body").scrollHeight;
document.getElementById("chat-input")?.removeAttribute("disabled");
}
function convertMessageChunkToJson(rawChunk) {
// Split the chunk into lines
if (rawChunk?.startsWith("{") && rawChunk?.endsWith("}")) {
try {
let jsonChunk = JSON.parse(rawChunk);
if (!jsonChunk.type)
jsonChunk = {type: 'message', data: jsonChunk};
return jsonChunk;
} catch (e) {
return {type: 'message', data: rawChunk};
}
} else if (rawChunk.length > 0) {
return {type: 'message', data: rawChunk};
}
}
function processMessageChunk(rawChunk) {
const chunk = convertMessageChunkToJson(rawChunk);
console.debug("Chunk:", chunk);
if (!chunk || !chunk.type) return;
if (chunk.type ==='status') {
console.log(`status: ${chunk.data}`);
const statusMessage = chunk.data;
handleStreamResponse(chatMessageState.newResponseTextEl, statusMessage, chatMessageState.rawQuery, chatMessageState.loadingEllipsis, false);
} else if (chunk.type === 'start_llm_response') {
console.log("Started streaming", new Date());
} else if (chunk.type === 'end_llm_response') {
console.log("Stopped streaming", new Date());
// Automatically respond with voice if the subscribed user has sent voice message
if (chatMessageState.isVoice && "{{ is_active }}" == "True")
textToSpeech(chatMessageState.rawResponse);
// Append any references after all the data has been streamed
finalizeChatBodyResponse(chatMessageState.references, chatMessageState.newResponseTextEl);
const liveQuery = chatMessageState.rawQuery;
// Reset variables
chatMessageState = {
newResponseTextEl: null,
newResponseEl: null,
loadingEllipsis: null,
references: {},
rawResponse: "",
rawQuery: liveQuery,
isVoice: false,
}
} else if (chunk.type === "references") {
chatMessageState.references = {"notes": chunk.data.context, "online": chunk.data.onlineContext};
} else if (chunk.type === 'message') {
const chunkData = chunk.data;
if (typeof chunkData === 'object' && chunkData !== null) {
// If chunkData is already a JSON object
handleJsonResponse(chunkData);
} else if (typeof chunkData === 'string' && chunkData.trim()?.startsWith("{") && chunkData.trim()?.endsWith("}")) {
// Try process chunk data as if it is a JSON object
try {
const jsonData = JSON.parse(chunkData.trim());
handleJsonResponse(jsonData);
} catch (e) {
chatMessageState.rawResponse += chunkData;
handleStreamResponse(chatMessageState.newResponseTextEl, chatMessageState.rawResponse, chatMessageState.rawQuery, chatMessageState.loadingEllipsis);
}
} else {
chatMessageState.rawResponse += chunkData;
handleStreamResponse(chatMessageState.newResponseTextEl, chatMessageState.rawResponse, chatMessageState.rawQuery, chatMessageState.loadingEllipsis);
}
}
}
function handleJsonResponse(jsonData) {
if (jsonData.image || jsonData.detail) {
chatMessageState.rawResponse = handleImageResponse(jsonData, chatMessageState.rawResponse);
} else if (jsonData.response) {
chatMessageState.rawResponse = jsonData.response;
}
if (chatMessageState.newResponseTextEl) {
chatMessageState.newResponseTextEl.innerHTML = "";
chatMessageState.newResponseTextEl.appendChild(formatHTMLMessage(chatMessageState.rawResponse));
}
}
async function readChatStream(response) {
if (!response.body) return;
const reader = response.body.getReader();
const decoder = new TextDecoder();
const eventDelimiter = '␃🔚␗';
let buffer = '';
while (true) {
const { value, done } = await reader.read();
// If the stream is done
if (done) {
// Process the last chunk
processMessageChunk(buffer);
buffer = '';
break;
}
// Read chunk from stream and append it to the buffer
const chunk = decoder.decode(value, { stream: true });
console.debug("Raw Chunk:", chunk)
// Start buffering chunks until complete event is received
buffer += chunk;
// Once the buffer contains a complete event
let newEventIndex;
while ((newEventIndex = buffer.indexOf(eventDelimiter)) !== -1) {
// Extract the event from the buffer
const event = buffer.slice(0, newEventIndex);
buffer = buffer.slice(newEventIndex + eventDelimiter.length);
// Process the event
if (event) processMessageChunk(event);
}
}
}

View file

@ -1,6 +1,6 @@
{
"name": "Khoj",
"version": "1.16.0",
"version": "1.17.0",
"description": "An AI copilot for your Second Brain",
"author": "Saba Imran, Debanjum Singh Solanky <team@khoj.dev>",
"license": "GPL-3.0-or-later",

View file

@ -346,7 +346,7 @@
inp.focus();
}
async function chat() {
async function chat(isVoice=false) {
//set chat body to empty
let chatBody = document.getElementById("chat-body");
chatBody.innerHTML = "";
@ -375,9 +375,6 @@
chat_body.dataset.conversationId = conversationID;
}
// Generate backend API URL to execute query
let chatApi = `${hostURL}/api/chat?q=${encodeURIComponent(query)}&n=${resultsCount}&client=web&stream=true&conversation_id=${conversationID}&region=${region}&city=${city}&country=${countryName}&timezone=${timezone}`;
let newResponseEl = document.createElement("div");
newResponseEl.classList.add("chat-message", "khoj");
newResponseEl.attributes["data-meta"] = "🏮 Khoj at " + formatDate(new Date());
@ -388,128 +385,41 @@
newResponseEl.appendChild(newResponseTextEl);
// Temporary status message to indicate that Khoj is thinking
let loadingEllipsis = document.createElement("div");
loadingEllipsis.classList.add("lds-ellipsis");
let firstEllipsis = document.createElement("div");
firstEllipsis.classList.add("lds-ellipsis-item");
let secondEllipsis = document.createElement("div");
secondEllipsis.classList.add("lds-ellipsis-item");
let thirdEllipsis = document.createElement("div");
thirdEllipsis.classList.add("lds-ellipsis-item");
let fourthEllipsis = document.createElement("div");
fourthEllipsis.classList.add("lds-ellipsis-item");
loadingEllipsis.appendChild(firstEllipsis);
loadingEllipsis.appendChild(secondEllipsis);
loadingEllipsis.appendChild(thirdEllipsis);
loadingEllipsis.appendChild(fourthEllipsis);
newResponseTextEl.appendChild(loadingEllipsis);
let loadingEllipsis = createLoadingEllipsis();
document.body.scrollTop = document.getElementById("chat-body").scrollHeight;
// Call Khoj chat API
let response = await fetch(chatApi, { headers });
let rawResponse = "";
let references = null;
const contentType = response.headers.get("content-type");
toggleLoading();
if (contentType === "application/json") {
// Handle JSON response
try {
const responseAsJson = await response.json();
if (responseAsJson.image) {
// If response has image field, response is a generated image.
if (responseAsJson.intentType === "text-to-image") {
rawResponse += `![${query}](data:image/png;base64,${responseAsJson.image})`;
} else if (responseAsJson.intentType === "text-to-image2") {
rawResponse += `![${query}](${responseAsJson.image})`;
} else if (responseAsJson.intentType === "text-to-image-v3") {
rawResponse += `![${query}](data:image/webp;base64,${responseAsJson.image})`;
}
const inferredQueries = responseAsJson.inferredQueries?.[0];
if (inferredQueries) {
rawResponse += `\n\n**Inferred Query**:\n\n${inferredQueries}`;
}
}
if (responseAsJson.context) {
const rawReferenceAsJson = responseAsJson.context;
references = createReferenceSection(rawReferenceAsJson, createLinkerSection=true);
}
if (responseAsJson.detail) {
// If response has detail field, response is an error message.
rawResponse += responseAsJson.detail;
}
} catch (error) {
// If the chunk is not a JSON object, just display it as is
rawResponse += chunk;
} finally {
newResponseTextEl.innerHTML = "";
newResponseTextEl.appendChild(formatHTMLMessage(rawResponse));
if (references != null) {
newResponseTextEl.appendChild(references);
}
// Setup chat message state
chatMessageState = {
newResponseTextEl,
newResponseEl,
loadingEllipsis,
references: {},
rawResponse: "",
rawQuery: query,
isVoice: isVoice,
}
document.body.scrollTop = document.getElementById("chat-body").scrollHeight;
}
} else {
// Handle streamed response of type text/event-stream or text/plain
const reader = response.body.getReader();
const decoder = new TextDecoder();
let references = {};
// Construct API URL to execute chat query
let chatApi = `${hostURL}/api/chat?q=${encodeURIComponent(query)}&conversation_id=${conversationID}&stream=true&client=desktop`;
chatApi += (!!region && !!city && !!countryName && !!timezone)
? `&region=${region}&city=${city}&country=${countryName}&timezone=${timezone}`
: '';
readStream();
const response = await fetch(chatApi, { headers });
function readStream() {
reader.read().then(({ done, value }) => {
if (done) {
// Append any references after all the data has been streamed
if (references != {}) {
newResponseTextEl.appendChild(createReferenceSection(references, createLinkerSection=true));
}
document.body.scrollTop = document.getElementById("chat-body").scrollHeight;
return;
}
// Decode message chunk from stream
const chunk = decoder.decode(value, { stream: true });
if (chunk.includes("### compiled references:")) {
const additionalResponse = chunk.split("### compiled references:")[0];
rawResponse += additionalResponse;
newResponseTextEl.innerHTML = "";
newResponseTextEl.appendChild(formatHTMLMessage(rawResponse));
const rawReference = chunk.split("### compiled references:")[1];
const rawReferenceAsJson = JSON.parse(rawReference);
if (rawReferenceAsJson instanceof Array) {
references["notes"] = rawReferenceAsJson;
} else if (typeof rawReferenceAsJson === "object" && rawReferenceAsJson !== null) {
references["online"] = rawReferenceAsJson;
}
readStream();
} else {
// Display response from Khoj
if (newResponseTextEl.getElementsByClassName("lds-ellipsis").length > 0) {
newResponseTextEl.removeChild(loadingEllipsis);
}
// If the chunk is not a JSON object, just display it as is
rawResponse += chunk;
newResponseTextEl.innerHTML = "";
newResponseTextEl.appendChild(formatHTMLMessage(rawResponse));
readStream();
}
// Scroll to bottom of chat window as chat response is streamed
document.body.scrollTop = document.getElementById("chat-body").scrollHeight;
});
}
try {
if (!response.ok) throw new Error(response.statusText);
if (!response.body) throw new Error("Response body is empty");
// Stream and render chat response
await readChatStream(response);
} catch (err) {
console.error(`Khoj chat response failed with\n${err}`);
if (chatMessageState.newResponseEl.getElementsByClassName("lds-ellipsis").length > 0 && chatMessageState.loadingEllipsis)
chatMessageState.newResponseTextEl.removeChild(chatMessageState.loadingEllipsis);
let errorMsg = "Sorry, unable to get response from Khoj backend ❤️‍🩹. Retry or contact developers for help at <a href=mailto:'team@khoj.dev'>team@khoj.dev</a> or <a href='https://discord.gg/BDgyabRM6e'>on Discord</a>";
newResponseTextEl.textContent = errorMsg;
}
document.body.scrollTop = document.getElementById("chat-body").scrollHeight;
}

View file

@ -34,8 +34,8 @@ function toggleNavMenu() {
document.addEventListener('click', function(event) {
let menu = document.getElementById("khoj-nav-menu");
let menuContainer = document.getElementById("khoj-nav-menu-container");
let isClickOnMenu = menuContainer.contains(event.target) || menuContainer === event.target;
if (isClickOnMenu === false && menu.classList.contains("show")) {
let isClickOnMenu = menuContainer?.contains(event.target) || menuContainer === event.target;
if (menu && isClickOnMenu === false && menu.classList.contains("show")) {
menu.classList.remove("show");
}
});

View file

@ -6,7 +6,7 @@
;; Saba Imran <saba@khoj.dev>
;; Description: An AI copilot for your Second Brain
;; Keywords: search, chat, org-mode, outlines, markdown, pdf, image
;; Version: 1.16.0
;; Version: 1.17.0
;; Package-Requires: ((emacs "27.1") (transient "0.3.0") (dash "2.19.1"))
;; URL: https://github.com/khoj-ai/khoj/tree/master/src/interface/emacs
@ -283,9 +283,9 @@ Auto invokes setup steps on calling main entrypoint."
(if (/= (apply #'call-process khoj-server-python-command
nil t nil
"-m" "pip" "install" "--upgrade"
'("khoj-assistant"))
'("khoj"))
0)
(message "khoj.el: Failed to install Khoj server. Please install it manually using pip install `khoj-assistant'.\n%s" (buffer-string))
(message "khoj.el: Failed to install Khoj server. Please install it manually using pip install `khoj'.\n%s" (buffer-string))
(message "khoj.el: Installed and upgraded Khoj server version: %s" (khoj--server-get-version)))))
(defun khoj--server-start ()

View file

@ -1,7 +1,7 @@
{
"id": "khoj",
"name": "Khoj",
"version": "1.16.0",
"version": "1.17.0",
"minAppVersion": "0.15.0",
"description": "An AI copilot for your Second Brain",
"author": "Khoj Inc.",

View file

@ -1,6 +1,6 @@
{
"name": "Khoj",
"version": "1.16.0",
"version": "1.17.0",
"description": "An AI copilot for your Second Brain",
"author": "Debanjum Singh Solanky, Saba Imran <team@khoj.dev>",
"license": "GPL-3.0-or-later",

View file

@ -12,6 +12,25 @@ export interface ChatJsonResult {
inferredQueries?: string[];
}
interface ChunkResult {
objects: string[];
remainder: string;
}
interface MessageChunk {
type: string;
data: any;
}
interface ChatMessageState {
newResponseTextEl: HTMLElement | null;
newResponseEl: HTMLElement | null;
loadingEllipsis: HTMLElement | null;
references: any;
rawResponse: string;
rawQuery: string;
isVoice: boolean;
}
interface Location {
region: string;
@ -26,6 +45,7 @@ export class KhojChatView extends KhojPaneView {
waitingForLocation: boolean;
location: Location;
keyPressTimeout: NodeJS.Timeout | null = null;
chatMessageState: ChatMessageState;
constructor(leaf: WorkspaceLeaf, setting: KhojSetting) {
super(leaf, setting);
@ -409,16 +429,15 @@ export class KhojChatView extends KhojPaneView {
message = DOMPurify.sanitize(message);
// Convert the message to html, sanitize the message html and render it to the real DOM
let chat_message_body_text_el = this.contentEl.createDiv();
chat_message_body_text_el.className = "chat-message-text-response";
chat_message_body_text_el.innerHTML = this.markdownTextToSanitizedHtml(message, this);
let chatMessageBodyTextEl = this.contentEl.createDiv();
chatMessageBodyTextEl.innerHTML = this.markdownTextToSanitizedHtml(message, this);
// Add a copy button to each chat message, if it doesn't already exist
if (willReplace === true) {
this.renderActionButtons(message, chat_message_body_text_el);
this.renderActionButtons(message, chatMessageBodyTextEl);
}
return chat_message_body_text_el;
return chatMessageBodyTextEl;
}
markdownTextToSanitizedHtml(markdownText: string, component: ItemView): string {
@ -502,23 +521,23 @@ export class KhojChatView extends KhojPaneView {
class: `khoj-chat-message ${sender}`
},
})
let chat_message_body_el = chatMessageEl.createDiv();
chat_message_body_el.addClasses(["khoj-chat-message-text", sender]);
let chat_message_body_text_el = chat_message_body_el.createDiv();
let chatMessageBodyEl = chatMessageEl.createDiv();
chatMessageBodyEl.addClasses(["khoj-chat-message-text", sender]);
let chatMessageBodyTextEl = chatMessageBodyEl.createDiv();
// Sanitize the markdown to render
message = DOMPurify.sanitize(message);
if (raw) {
chat_message_body_text_el.innerHTML = message;
chatMessageBodyTextEl.innerHTML = message;
} else {
// @ts-ignore
chat_message_body_text_el.innerHTML = this.markdownTextToSanitizedHtml(message, this);
chatMessageBodyTextEl.innerHTML = this.markdownTextToSanitizedHtml(message, this);
}
// Add action buttons to each chat message element
if (willReplace === true) {
this.renderActionButtons(message, chat_message_body_text_el);
this.renderActionButtons(message, chatMessageBodyTextEl);
}
// Remove user-select: none property to make text selectable
@ -531,42 +550,38 @@ export class KhojChatView extends KhojPaneView {
}
createKhojResponseDiv(dt?: Date): HTMLDivElement {
let message_time = this.formatDate(dt ?? new Date());
let messageTime = this.formatDate(dt ?? new Date());
// Append message to conversation history HTML element.
// The chat logs should display above the message input box to follow standard UI semantics
let chat_body_el = this.contentEl.getElementsByClassName("khoj-chat-body")[0];
let chat_message_el = chat_body_el.createDiv({
let chatBodyEl = this.contentEl.getElementsByClassName("khoj-chat-body")[0];
let chatMessageEl = chatBodyEl.createDiv({
attr: {
"data-meta": `🏮 Khoj at ${message_time}`,
"data-meta": `🏮 Khoj at ${messageTime}`,
class: `khoj-chat-message khoj`
},
}).createDiv({
attr: {
class: `khoj-chat-message-text khoj`
},
}).createDiv();
})
// Scroll to bottom after inserting chat messages
this.scrollChatToBottom();
return chat_message_el;
return chatMessageEl;
}
async renderIncrementalMessage(htmlElement: HTMLDivElement, additionalMessage: string) {
this.result += additionalMessage;
this.chatMessageState.rawResponse += additionalMessage;
htmlElement.innerHTML = "";
// Sanitize the markdown to render
this.result = DOMPurify.sanitize(this.result);
this.chatMessageState.rawResponse = DOMPurify.sanitize(this.chatMessageState.rawResponse);
// @ts-ignore
htmlElement.innerHTML = this.markdownTextToSanitizedHtml(this.result, this);
htmlElement.innerHTML = this.markdownTextToSanitizedHtml(this.chatMessageState.rawResponse, this);
// Render action buttons for the message
this.renderActionButtons(this.result, htmlElement);
this.renderActionButtons(this.chatMessageState.rawResponse, htmlElement);
// Scroll to bottom of modal, till the send message input box
this.scrollChatToBottom();
}
renderActionButtons(message: string, chat_message_body_text_el: HTMLElement) {
renderActionButtons(message: string, chatMessageBodyTextEl: HTMLElement) {
let copyButton = this.contentEl.createEl('button');
copyButton.classList.add("chat-action-button");
copyButton.title = "Copy Message to Clipboard";
@ -593,10 +608,10 @@ export class KhojChatView extends KhojPaneView {
}
// Append buttons to parent element
chat_message_body_text_el.append(copyButton, pasteToFile);
chatMessageBodyTextEl.append(copyButton, pasteToFile);
if (speechButton) {
chat_message_body_text_el.append(speechButton);
chatMessageBodyTextEl.append(speechButton);
}
}
@ -854,35 +869,122 @@ export class KhojChatView extends KhojPaneView {
return true;
}
async readChatStream(response: Response, responseElement: HTMLDivElement, isVoice: boolean = false): Promise<void> {
convertMessageChunkToJson(rawChunk: string): MessageChunk {
if (rawChunk?.startsWith("{") && rawChunk?.endsWith("}")) {
try {
let jsonChunk = JSON.parse(rawChunk);
if (!jsonChunk.type)
jsonChunk = {type: 'message', data: jsonChunk};
return jsonChunk;
} catch (e) {
return {type: 'message', data: rawChunk};
}
} else if (rawChunk.length > 0) {
return {type: 'message', data: rawChunk};
}
return {type: '', data: ''};
}
processMessageChunk(rawChunk: string): void {
const chunk = this.convertMessageChunkToJson(rawChunk);
console.debug("Chunk:", chunk);
if (!chunk || !chunk.type) return;
if (chunk.type === 'status') {
console.log(`status: ${chunk.data}`);
const statusMessage = chunk.data;
this.handleStreamResponse(this.chatMessageState.newResponseTextEl, statusMessage, this.chatMessageState.loadingEllipsis, false);
} else if (chunk.type === 'start_llm_response') {
console.log("Started streaming", new Date());
} else if (chunk.type === 'end_llm_response') {
console.log("Stopped streaming", new Date());
// Automatically respond with voice if the subscribed user has sent voice message
if (this.chatMessageState.isVoice && this.setting.userInfo?.is_active)
this.textToSpeech(this.chatMessageState.rawResponse);
// Append any references after all the data has been streamed
this.finalizeChatBodyResponse(this.chatMessageState.references, this.chatMessageState.newResponseTextEl);
const liveQuery = this.chatMessageState.rawQuery;
// Reset variables
this.chatMessageState = {
newResponseTextEl: null,
newResponseEl: null,
loadingEllipsis: null,
references: {},
rawResponse: "",
rawQuery: liveQuery,
isVoice: false,
};
} else if (chunk.type === "references") {
this.chatMessageState.references = {"notes": chunk.data.context, "online": chunk.data.onlineContext};
} else if (chunk.type === 'message') {
const chunkData = chunk.data;
if (typeof chunkData === 'object' && chunkData !== null) {
// If chunkData is already a JSON object
this.handleJsonResponse(chunkData);
} else if (typeof chunkData === 'string' && chunkData.trim()?.startsWith("{") && chunkData.trim()?.endsWith("}")) {
// Try process chunk data as if it is a JSON object
try {
const jsonData = JSON.parse(chunkData.trim());
this.handleJsonResponse(jsonData);
} catch (e) {
this.chatMessageState.rawResponse += chunkData;
this.handleStreamResponse(this.chatMessageState.newResponseTextEl, this.chatMessageState.rawResponse, this.chatMessageState.loadingEllipsis);
}
} else {
this.chatMessageState.rawResponse += chunkData;
this.handleStreamResponse(this.chatMessageState.newResponseTextEl, this.chatMessageState.rawResponse, this.chatMessageState.loadingEllipsis);
}
}
}
handleJsonResponse(jsonData: any): void {
if (jsonData.image || jsonData.detail) {
this.chatMessageState.rawResponse = this.handleImageResponse(jsonData, this.chatMessageState.rawResponse);
} else if (jsonData.response) {
this.chatMessageState.rawResponse = jsonData.response;
}
if (this.chatMessageState.newResponseTextEl) {
this.chatMessageState.newResponseTextEl.innerHTML = "";
this.chatMessageState.newResponseTextEl.appendChild(this.formatHTMLMessage(this.chatMessageState.rawResponse));
}
}
async readChatStream(response: Response): Promise<void> {
// Exit if response body is empty
if (response.body == null) return;
const reader = response.body.getReader();
const decoder = new TextDecoder();
const eventDelimiter = '␃🔚␗';
let buffer = '';
while (true) {
const { value, done } = await reader.read();
if (done) {
// Automatically respond with voice if the subscribed user has sent voice message
if (isVoice && this.setting.userInfo?.is_active) this.textToSpeech(this.result);
this.processMessageChunk(buffer);
buffer = '';
// Break if the stream is done
break;
}
let responseText = decoder.decode(value);
if (responseText.includes("### compiled references:")) {
// Render any references used to generate the response
const [additionalResponse, rawReference] = responseText.split("### compiled references:", 2);
await this.renderIncrementalMessage(responseElement, additionalResponse);
const chunk = decoder.decode(value, { stream: true });
console.debug("Raw Chunk:", chunk)
// Start buffering chunks until complete event is received
buffer += chunk;
const rawReferenceAsJson = JSON.parse(rawReference);
let references = this.extractReferences(rawReferenceAsJson);
responseElement.appendChild(this.createReferenceSection(references));
} else {
// Render incremental chat response
await this.renderIncrementalMessage(responseElement, responseText);
// Once the buffer contains a complete event
let newEventIndex;
while ((newEventIndex = buffer.indexOf(eventDelimiter)) !== -1) {
// Extract the event from the buffer
const event = buffer.slice(0, newEventIndex);
buffer = buffer.slice(newEventIndex + eventDelimiter.length);
// Process the event
if (event) this.processMessageChunk(event);
}
}
}
@ -895,83 +997,59 @@ export class KhojChatView extends KhojPaneView {
let chatBodyEl = this.contentEl.getElementsByClassName("khoj-chat-body")[0] as HTMLElement;
this.renderMessage(chatBodyEl, query, "you");
let conversationID = chatBodyEl.dataset.conversationId;
if (!conversationID) {
let conversationId = chatBodyEl.dataset.conversationId;
if (!conversationId) {
let chatUrl = `${this.setting.khojUrl}/api/chat/sessions?client=obsidian`;
let response = await fetch(chatUrl, {
method: "POST",
headers: { "Authorization": `Bearer ${this.setting.khojApiKey}` },
});
let data = await response.json();
conversationID = data.conversation_id;
chatBodyEl.dataset.conversationId = conversationID;
conversationId = data.conversation_id;
chatBodyEl.dataset.conversationId = conversationId;
}
// Get chat response from Khoj backend
let encodedQuery = encodeURIComponent(query);
let chatUrl = `${this.setting.khojUrl}/api/chat?q=${encodedQuery}&n=${this.setting.resultsCount}&client=obsidian&stream=true&region=${this.location.region}&city=${this.location.city}&country=${this.location.countryName}&timezone=${this.location.timezone}`;
let responseElement = this.createKhojResponseDiv();
let chatUrl = `${this.setting.khojUrl}/api/chat?q=${encodedQuery}&conversation_id=${conversationId}&n=${this.setting.resultsCount}&stream=true&client=obsidian`;
if (!!this.location) chatUrl += `&region=${this.location.region}&city=${this.location.city}&country=${this.location.countryName}&timezone=${this.location.timezone}`;
let newResponseEl = this.createKhojResponseDiv();
let newResponseTextEl = newResponseEl.createDiv();
newResponseTextEl.classList.add("khoj-chat-message-text", "khoj");
// Temporary status message to indicate that Khoj is thinking
this.result = "";
let loadingEllipsis = this.createLoadingEllipse();
responseElement.appendChild(loadingEllipsis);
newResponseTextEl.appendChild(loadingEllipsis);
// Set chat message state
this.chatMessageState = {
newResponseEl: newResponseEl,
newResponseTextEl: newResponseTextEl,
loadingEllipsis: loadingEllipsis,
references: {},
rawQuery: query,
rawResponse: "",
isVoice: isVoice,
};
let response = await fetch(chatUrl, {
method: "GET",
headers: {
"Content-Type": "text/event-stream",
"Content-Type": "text/plain",
"Authorization": `Bearer ${this.setting.khojApiKey}`,
},
})
try {
if (response.body === null) {
throw new Error("Response body is null");
}
if (response.body === null) throw new Error("Response body is null");
// Clear loading status message
if (responseElement.getElementsByClassName("lds-ellipsis").length > 0 && loadingEllipsis) {
responseElement.removeChild(loadingEllipsis);
}
// Reset collated chat result to empty string
this.result = "";
responseElement.innerHTML = "";
if (response.headers.get("content-type") === "application/json") {
let responseText = ""
try {
const responseAsJson = await response.json() as ChatJsonResult;
if (responseAsJson.image) {
// If response has image field, response is a generated image.
if (responseAsJson.intentType === "text-to-image") {
responseText += `![${query}](data:image/png;base64,${responseAsJson.image})`;
} else if (responseAsJson.intentType === "text-to-image2") {
responseText += `![${query}](${responseAsJson.image})`;
} else if (responseAsJson.intentType === "text-to-image-v3") {
responseText += `![${query}](data:image/webp;base64,${responseAsJson.image})`;
}
const inferredQuery = responseAsJson.inferredQueries?.[0];
if (inferredQuery) {
responseText += `\n\n**Inferred Query**:\n\n${inferredQuery}`;
}
} else if (responseAsJson.detail) {
responseText = responseAsJson.detail;
}
} catch (error) {
// If the chunk is not a JSON object, just display it as is
responseText = await response.text();
} finally {
await this.renderIncrementalMessage(responseElement, responseText);
}
} else {
// Stream and render chat response
await this.readChatStream(response, responseElement, isVoice);
}
// Stream and render chat response
await this.readChatStream(response);
} catch (err) {
console.log(`Khoj chat response failed with\n${err}`);
console.error(`Khoj chat response failed with\n${err}`);
let errorMsg = "Sorry, unable to get response from Khoj backend ❤️‍🩹. Retry or contact developers for help at <a href=mailto:'team@khoj.dev'>team@khoj.dev</a> or <a href='https://discord.gg/BDgyabRM6e'>on Discord</a>";
responseElement.innerHTML = errorMsg
newResponseTextEl.textContent = errorMsg;
}
}
@ -1196,30 +1274,21 @@ export class KhojChatView extends KhojPaneView {
handleStreamResponse(newResponseElement: HTMLElement | null, rawResponse: string, loadingEllipsis: HTMLElement | null, replace = true) {
if (!newResponseElement) return;
if (newResponseElement.getElementsByClassName("lds-ellipsis").length > 0 && loadingEllipsis) {
// Remove loading ellipsis if it exists
if (newResponseElement.getElementsByClassName("lds-ellipsis").length > 0 && loadingEllipsis)
newResponseElement.removeChild(loadingEllipsis);
}
if (replace) {
newResponseElement.innerHTML = "";
}
// Clear the response element if replace is true
if (replace) newResponseElement.innerHTML = "";
// Append response to the response element
newResponseElement.appendChild(this.formatHTMLMessage(rawResponse, false, replace));
// Append loading ellipsis if it exists
if (!replace && loadingEllipsis) newResponseElement.appendChild(loadingEllipsis);
// Scroll to bottom of chat view
this.scrollChatToBottom();
}
handleCompiledReferences(rawResponseElement: HTMLElement | null, chunk: string, references: any, rawResponse: string) {
if (!rawResponseElement || !chunk) return { rawResponse, references };
const [additionalResponse, rawReference] = chunk.split("### compiled references:", 2);
rawResponse += additionalResponse;
rawResponseElement.innerHTML = "";
rawResponseElement.appendChild(this.formatHTMLMessage(rawResponse));
const rawReferenceAsJson = JSON.parse(rawReference);
references = this.extractReferences(rawReferenceAsJson);
return { rawResponse, references };
}
handleImageResponse(imageJson: any, rawResponse: string) {
if (imageJson.image) {
const inferredQuery = imageJson.inferredQueries?.[0] ?? "generated image";
@ -1236,33 +1305,10 @@ export class KhojChatView extends KhojPaneView {
rawResponse += `\n\n**Inferred Query**:\n\n${inferredQuery}`;
}
}
let references = {};
if (imageJson.context && imageJson.context.length > 0) {
references = this.extractReferences(imageJson.context);
}
if (imageJson.detail) {
// If response has detail field, response is an error message.
rawResponse += imageJson.detail;
}
return { rawResponse, references };
}
// If response has detail field, response is an error message.
if (imageJson.detail) rawResponse += imageJson.detail;
extractReferences(rawReferenceAsJson: any): object {
let references: any = {};
if (rawReferenceAsJson instanceof Array) {
references["notes"] = rawReferenceAsJson;
} else if (typeof rawReferenceAsJson === "object" && rawReferenceAsJson !== null) {
references["online"] = rawReferenceAsJson;
}
return references;
}
addMessageToChatBody(rawResponse: string, newResponseElement: HTMLElement | null, references: any) {
if (!newResponseElement) return;
newResponseElement.innerHTML = "";
newResponseElement.appendChild(this.formatHTMLMessage(rawResponse));
this.finalizeChatBodyResponse(references, newResponseElement);
return rawResponse;
}
finalizeChatBodyResponse(references: object, newResponseElement: HTMLElement | null) {

View file

@ -1,6 +1,6 @@
import { App, SuggestModal, request, MarkdownRenderer, Instruction, Platform } from 'obsidian';
import { KhojSetting } from 'src/settings';
import { createNoteAndCloseModal, getLinkToEntry } from 'src/utils';
import { supportedBinaryFileTypes, createNoteAndCloseModal, getFileFromPath, getLinkToEntry, supportedImageFilesTypes } from 'src/utils';
export interface SearchResult {
entry: string;
@ -112,28 +112,41 @@ export class KhojSearchModal extends SuggestModal<SearchResult> {
let os_path_separator = result.file.includes('\\') ? '\\' : '/';
let filename = result.file.split(os_path_separator).pop();
// Remove YAML frontmatter when rendering string
result.entry = result.entry.replace(/---[\n\r][\s\S]*---[\n\r]/, '');
// Truncate search results to lines_to_render
let entry_snipped_indicator = result.entry.split('\n').length > lines_to_render ? ' **...**' : '';
let snipped_entry = result.entry.split('\n').slice(0, lines_to_render).join('\n');
// Show filename of each search result for context
el.createEl("div",{ cls: 'khoj-result-file' }).setText(filename ?? "");
let result_el = el.createEl("div", { cls: 'khoj-result-entry' })
let resultToRender = "";
let fileExtension = filename?.split(".").pop() ?? "";
if (supportedImageFilesTypes.includes(fileExtension) && filename) {
let linkToEntry: string = filename;
let imageFiles = this.app.vault.getFiles().filter(file => supportedImageFilesTypes.includes(fileExtension));
// Find vault file of chosen search result
let fileInVault = getFileFromPath(imageFiles, result.file);
if (fileInVault)
linkToEntry = this.app.vault.getResourcePath(fileInVault);
resultToRender = `![](${linkToEntry})`;
} else {
// Remove YAML frontmatter when rendering string
result.entry = result.entry.replace(/---[\n\r][\s\S]*---[\n\r]/, '');
// Truncate search results to lines_to_render
let entry_snipped_indicator = result.entry.split('\n').length > lines_to_render ? ' **...**' : '';
let snipped_entry = result.entry.split('\n').slice(0, lines_to_render).join('\n');
resultToRender = `${snipped_entry}${entry_snipped_indicator}`;
}
// @ts-ignore
MarkdownRenderer.renderMarkdown(snipped_entry + entry_snipped_indicator, result_el, result.file, null);
MarkdownRenderer.renderMarkdown(resultToRender, result_el, result.file, null);
}
async onChooseSuggestion(result: SearchResult, _: MouseEvent | KeyboardEvent) {
// Get all markdown and PDF files in vault
// Get all markdown, pdf and image files in vault
const mdFiles = this.app.vault.getMarkdownFiles();
const pdfFiles = this.app.vault.getFiles().filter(file => file.extension === 'pdf');
const binaryFiles = this.app.vault.getFiles().filter(file => supportedBinaryFileTypes.includes(file.extension));
// Find, Open vault file at heading of chosen search result
let linkToEntry = getLinkToEntry(mdFiles.concat(pdfFiles), result.file, result.entry);
let linkToEntry = getLinkToEntry(mdFiles.concat(binaryFiles), result.file, result.entry);
if (linkToEntry) this.app.workspace.openLinkText(linkToEntry, '');
}
}

View file

@ -10,7 +10,6 @@ export interface UserInfo {
email?: string;
}
export interface KhojSetting {
resultsCount: number;
khojUrl: string;

View file

@ -48,11 +48,14 @@ function filenameToMimeType (filename: TFile): string {
}
}
export const supportedImageFilesTypes = ['png', 'jpg', 'jpeg'];
export const supportedBinaryFileTypes = ['pdf'].concat(supportedImageFilesTypes);
export const supportedFileTypes = ['md', 'markdown'].concat(supportedBinaryFileTypes);
export async function updateContentIndex(vault: Vault, setting: KhojSetting, lastSync: Map<TFile, number>, regenerate: boolean = false): Promise<Map<TFile, number>> {
// Get all markdown, pdf files in the vault
console.log(`Khoj: Updating Khoj content index...`)
const files = vault.getFiles().filter(file => file.extension === 'md' || file.extension === 'markdown' || file.extension === 'pdf');
const binaryFileTypes = ['pdf']
const files = vault.getFiles().filter(file => supportedFileTypes.includes(file.extension));
let countOfFilesToIndex = 0;
let countOfFilesToDelete = 0;
lastSync = lastSync.size > 0 ? lastSync : new Map<TFile, number>();
@ -66,7 +69,7 @@ export async function updateContentIndex(vault: Vault, setting: KhojSetting, las
}
countOfFilesToIndex++;
const encoding = binaryFileTypes.includes(file.extension) ? "binary" : "utf8";
const encoding = supportedBinaryFileTypes.includes(file.extension) ? "binary" : "utf8";
const mimeType = fileExtensionToMimeType(file.extension) + (encoding === "utf8" ? "; charset=UTF-8" : "");
const fileContent = encoding == 'binary' ? await vault.readBinary(file) : await vault.read(file);
fileData.push({blob: new Blob([fileContent], { type: mimeType }), path: file.path});
@ -354,7 +357,7 @@ export function pasteTextAtCursor(text: string | undefined) {
}
}
export function getLinkToEntry(sourceFiles: TFile[], chosenFile: string, chosenEntry: string): string | undefined {
export function getFileFromPath(sourceFiles: TFile[], chosenFile: string): TFile | undefined {
// Find the vault file matching file of chosen file, entry
let fileMatch = sourceFiles
// Sort by descending length of path
@ -363,6 +366,12 @@ export function getLinkToEntry(sourceFiles: TFile[], chosenFile: string, chosenE
// The first match is the best file match across OS
// e.g. Khoj server on Linux, Obsidian vault on Android
.find(file => chosenFile.replace(/\\/g, "/").endsWith(file.path))
return fileMatch;
}
export function getLinkToEntry(sourceFiles: TFile[], chosenFile: string, chosenEntry: string): string | undefined {
// Find the vault file matching file of chosen file, entry
let fileMatch = getFileFromPath(sourceFiles, chosenFile);
// Return link to vault file at heading of chosen search result
if (fileMatch) {

View file

@ -85,6 +85,12 @@ If your plugin does not need CSS, delete this file.
margin-left: auto;
white-space: pre-line;
}
/* Override white-space for ul, ol, li under khoj-chat-message-text.khoj */
.khoj-chat-message-text.khoj ul,
.khoj-chat-message-text.khoj ol,
.khoj-chat-message-text.khoj li {
white-space: normal;
}
/* add left protrusion to khoj chat bubble */
.khoj-chat-message-text.khoj:after {
content: '';

View file

@ -53,5 +53,6 @@
"1.13.0": "0.15.0",
"1.14.0": "0.15.0",
"1.15.0": "0.15.0",
"1.16.0": "0.15.0"
"1.16.0": "0.15.0",
"1.17.0": "0.15.0"
}

View file

@ -559,7 +559,7 @@ class AgentAdapters:
if default_conversation_config is None:
logger.info("No default conversation config found, skipping default agent creation")
return None
default_personality = prompts.personality.format(current_date="placeholder")
default_personality = prompts.personality.format(current_date="placeholder", day_of_week="placeholder")
agent = Agent.objects.filter(name=AgentAdapters.DEFAULT_AGENT_NAME).first()
@ -684,19 +684,18 @@ class ConversationAdapters:
async def aget_conversation_by_user(
user: KhojUser, client_application: ClientApplication = None, conversation_id: int = None, title: str = None
) -> Optional[Conversation]:
query = Conversation.objects.filter(user=user, client=client_application).prefetch_related("agent")
if conversation_id:
return await Conversation.objects.filter(user=user, client=client_application, id=conversation_id).afirst()
return await query.filter(id=conversation_id).afirst()
elif title:
return await Conversation.objects.filter(user=user, client=client_application, title=title).afirst()
else:
conversation = Conversation.objects.filter(user=user, client=client_application).order_by("-updated_at")
return await query.filter(title=title).afirst()
if await conversation.aexists():
return await conversation.prefetch_related("agent").afirst()
conversation = await query.order_by("-updated_at").afirst()
return await (
Conversation.objects.filter(user=user, client=client_application).order_by("-updated_at").afirst()
) or await Conversation.objects.acreate(user=user, client=client_application)
return conversation or await Conversation.objects.prefetch_related("agent").acreate(
user=user, client=client_application
)
@staticmethod
async def adelete_conversation_by_user(

View file

@ -74,14 +74,13 @@ To get started, just start typing below. You can also type / to see a list of co
}, 1000);
});
}
var websocket = null;
let region = null;
let city = null;
let countryName = null;
let timezone = null;
let waitingForLocation = true;
let websocketState = {
let chatMessageState = {
newResponseTextEl: null,
newResponseEl: null,
loadingEllipsis: null,
@ -105,7 +104,7 @@ To get started, just start typing below. You can also type / to see a list of co
.finally(() => {
console.debug("Region:", region, "City:", city, "Country:", countryName, "Timezone:", timezone);
waitingForLocation = false;
setupWebSocket();
initMessageState();
});
function formatDate(date) {
@ -599,13 +598,8 @@ To get started, just start typing below. You can also type / to see a list of co
}
async function chat(isVoice=false) {
if (websocket) {
sendMessageViaWebSocket(isVoice);
return;
}
let query = document.getElementById("chat-input").value.trim();
let resultsCount = localStorage.getItem("khojResultsCount") || 5;
// Extract chat message from chat input form
var query = document.getElementById("chat-input").value.trim();
console.log(`Query: ${query}`);
// Short circuit on empty query
@ -624,31 +618,30 @@ To get started, just start typing below. You can also type / to see a list of co
document.getElementById("chat-input").value = "";
autoResize();
document.getElementById("chat-input").setAttribute("disabled", "disabled");
let chat_body = document.getElementById("chat-body");
let conversationID = chat_body.dataset.conversationId;
let chatBody = document.getElementById("chat-body");
let conversationID = chatBody.dataset.conversationId;
if (!conversationID) {
let response = await fetch('/api/chat/sessions', { method: "POST" });
let response = await fetch(`${hostURL}/api/chat/sessions`, { method: "POST" });
let data = await response.json();
conversationID = data.conversation_id;
chat_body.dataset.conversationId = conversationID;
refreshChatSessionsPanel();
chatBody.dataset.conversationId = conversationID;
await refreshChatSessionsPanel();
}
let new_response = document.createElement("div");
new_response.classList.add("chat-message", "khoj");
new_response.attributes["data-meta"] = "🏮 Khoj at " + formatDate(new Date());
chat_body.appendChild(new_response);
let newResponseEl = document.createElement("div");
newResponseEl.classList.add("chat-message", "khoj");
newResponseEl.attributes["data-meta"] = "🏮 Khoj at " + formatDate(new Date());
chatBody.appendChild(newResponseEl);
let newResponseText = document.createElement("div");
newResponseText.classList.add("chat-message-text", "khoj");
new_response.appendChild(newResponseText);
let newResponseTextEl = document.createElement("div");
newResponseTextEl.classList.add("chat-message-text", "khoj");
newResponseEl.appendChild(newResponseTextEl);
// Temporary status message to indicate that Khoj is thinking
let loadingEllipsis = createLoadingEllipse();
newResponseText.appendChild(loadingEllipsis);
newResponseTextEl.appendChild(loadingEllipsis);
document.getElementById("chat-body").scrollTop = document.getElementById("chat-body").scrollHeight;
let chatTooltip = document.getElementById("chat-tooltip");
@ -657,65 +650,38 @@ To get started, just start typing below. You can also type / to see a list of co
let chatInput = document.getElementById("chat-input");
chatInput.classList.remove("option-enabled");
// Generate backend API URL to execute query
let url = `/api/chat?q=${encodeURIComponent(query)}&n=${resultsCount}&client=web&stream=true&conversation_id=${conversationID}&region=${region}&city=${city}&country=${countryName}&timezone=${timezone}`;
// Call specified Khoj API
let response = await fetch(url);
let rawResponse = "";
let references = null;
const contentType = response.headers.get("content-type");
if (contentType === "application/json") {
// Handle JSON response
try {
const responseAsJson = await response.json();
if (responseAsJson.image || responseAsJson.detail) {
({rawResponse, references } = handleImageResponse(responseAsJson, rawResponse));
} else {
rawResponse = responseAsJson.response;
}
} catch (error) {
// If the chunk is not a JSON object, just display it as is
rawResponse += chunk;
} finally {
addMessageToChatBody(rawResponse, newResponseText, references);
}
} else {
// Handle streamed response of type text/event-stream or text/plain
const reader = response.body.getReader();
const decoder = new TextDecoder();
let references = {};
readStream();
function readStream() {
reader.read().then(({ done, value }) => {
if (done) {
// Append any references after all the data has been streamed
finalizeChatBodyResponse(references, newResponseText);
return;
}
// Decode message chunk from stream
const chunk = decoder.decode(value, { stream: true });
if (chunk.includes("### compiled references:")) {
({ rawResponse, references } = handleCompiledReferences(newResponseText, chunk, references, rawResponse));
readStream();
} else {
// If the chunk is not a JSON object, just display it as is
rawResponse += chunk;
handleStreamResponse(newResponseText, rawResponse, query, loadingEllipsis);
readStream();
}
});
// Scroll to bottom of chat window as chat response is streamed
document.getElementById("chat-body").scrollTop = document.getElementById("chat-body").scrollHeight;
};
// Setup chat message state
chatMessageState = {
newResponseTextEl,
newResponseEl,
loadingEllipsis,
references: {},
rawResponse: "",
rawQuery: query,
isVoice: isVoice,
}
};
// Call Khoj chat API
let chatApi = `/api/chat?q=${encodeURIComponent(query)}&conversation_id=${conversationID}&stream=true&client=web`;
chatApi += (!!region && !!city && !!countryName && !!timezone)
? `&region=${region}&city=${city}&country=${countryName}&timezone=${timezone}`
: '';
const response = await fetch(chatApi);
try {
if (!response.ok) throw new Error(response.statusText);
if (!response.body) throw new Error("Response body is empty");
// Stream and render chat response
await readChatStream(response);
} catch (err) {
console.error(`Khoj chat response failed with\n${err}`);
if (chatMessageState.newResponseEl.getElementsByClassName("lds-ellipsis").length > 0 && chatMessageState.loadingEllipsis)
chatMessageState.newResponseTextEl.removeChild(chatMessageState.loadingEllipsis);
let errorMsg = "Sorry, unable to get response from Khoj backend ❤️‍🩹. Retry or contact developers for help at <a href=mailto:'team@khoj.dev'>team@khoj.dev</a> or <a href='https://discord.gg/BDgyabRM6e'>on Discord</a>";
newResponseTextEl.innerHTML = errorMsg;
}
}
function createLoadingEllipse() {
// Temporary status message to indicate that Khoj is thinking
@ -743,32 +709,22 @@ To get started, just start typing below. You can also type / to see a list of co
}
function handleStreamResponse(newResponseElement, rawResponse, rawQuery, loadingEllipsis, replace=true) {
if (newResponseElement.getElementsByClassName("lds-ellipsis").length > 0 && loadingEllipsis) {
if (!newResponseElement) return;
// Remove loading ellipsis if it exists
if (newResponseElement.getElementsByClassName("lds-ellipsis").length > 0 && loadingEllipsis)
newResponseElement.removeChild(loadingEllipsis);
}
if (replace) {
newResponseElement.innerHTML = "";
}
// Clear the response element if replace is true
if (replace) newResponseElement.innerHTML = "";
// Append response to the response element
newResponseElement.appendChild(formatHTMLMessage(rawResponse, false, replace, rawQuery));
// Append loading ellipsis if it exists
if (!replace && loadingEllipsis) newResponseElement.appendChild(loadingEllipsis);
// Scroll to bottom of chat view
document.getElementById("chat-body").scrollTop = document.getElementById("chat-body").scrollHeight;
}
function handleCompiledReferences(rawResponseElement, chunk, references, rawResponse) {
const additionalResponse = chunk.split("### compiled references:")[0];
rawResponse += additionalResponse;
rawResponseElement.innerHTML = "";
rawResponseElement.appendChild(formatHTMLMessage(rawResponse));
const rawReference = chunk.split("### compiled references:")[1];
const rawReferenceAsJson = JSON.parse(rawReference);
if (rawReferenceAsJson instanceof Array) {
references["notes"] = rawReferenceAsJson;
} else if (typeof rawReferenceAsJson === "object" && rawReferenceAsJson !== null) {
references["online"] = rawReferenceAsJson;
}
return { rawResponse, references };
}
function handleImageResponse(imageJson, rawResponse) {
if (imageJson.image) {
const inferredQuery = imageJson.inferredQueries?.[0] ?? "generated image";
@ -785,35 +741,139 @@ To get started, just start typing below. You can also type / to see a list of co
rawResponse += `\n\n**Inferred Query**:\n\n${inferredQuery}`;
}
}
let references = {};
if (imageJson.context && imageJson.context.length > 0) {
const rawReferenceAsJson = imageJson.context;
if (rawReferenceAsJson instanceof Array) {
references["notes"] = rawReferenceAsJson;
} else if (typeof rawReferenceAsJson === "object" && rawReferenceAsJson !== null) {
references["online"] = rawReferenceAsJson;
}
}
if (imageJson.detail) {
// If response has detail field, response is an error message.
rawResponse += imageJson.detail;
}
return { rawResponse, references };
}
function addMessageToChatBody(rawResponse, newResponseElement, references) {
newResponseElement.innerHTML = "";
newResponseElement.appendChild(formatHTMLMessage(rawResponse));
// If response has detail field, response is an error message.
if (imageJson.detail) rawResponse += imageJson.detail;
finalizeChatBodyResponse(references, newResponseElement);
return rawResponse;
}
function finalizeChatBodyResponse(references, newResponseElement) {
if (references != null && Object.keys(references).length > 0) {
if (!!newResponseElement && references != null && Object.keys(references).length > 0) {
newResponseElement.appendChild(createReferenceSection(references));
}
document.getElementById("chat-body").scrollTop = document.getElementById("chat-body").scrollHeight;
document.getElementById("chat-input").removeAttribute("disabled");
document.getElementById("chat-input")?.removeAttribute("disabled");
}
function convertMessageChunkToJson(rawChunk) {
// Split the chunk into lines
console.debug("Raw Event:", rawChunk);
if (rawChunk?.startsWith("{") && rawChunk?.endsWith("}")) {
try {
let jsonChunk = JSON.parse(rawChunk);
if (!jsonChunk.type)
jsonChunk = {type: 'message', data: jsonChunk};
return jsonChunk;
} catch (e) {
return {type: 'message', data: rawChunk};
}
} else if (rawChunk.length > 0) {
return {type: 'message', data: rawChunk};
}
}
function processMessageChunk(rawChunk) {
const chunk = convertMessageChunkToJson(rawChunk);
console.debug("Json Event:", chunk);
if (!chunk || !chunk.type) return;
if (chunk.type ==='status') {
console.log(`status: ${chunk.data}`);
const statusMessage = chunk.data;
handleStreamResponse(chatMessageState.newResponseTextEl, statusMessage, chatMessageState.rawQuery, chatMessageState.loadingEllipsis, false);
} else if (chunk.type === 'start_llm_response') {
console.log("Started streaming", new Date());
} else if (chunk.type === 'end_llm_response') {
console.log("Stopped streaming", new Date());
// Automatically respond with voice if the subscribed user has sent voice message
if (chatMessageState.isVoice && "{{ is_active }}" == "True")
textToSpeech(chatMessageState.rawResponse);
// Append any references after all the data has been streamed
finalizeChatBodyResponse(chatMessageState.references, chatMessageState.newResponseTextEl);
const liveQuery = chatMessageState.rawQuery;
// Reset variables
chatMessageState = {
newResponseTextEl: null,
newResponseEl: null,
loadingEllipsis: null,
references: {},
rawResponse: "",
rawQuery: liveQuery,
isVoice: false,
}
} else if (chunk.type === "references") {
chatMessageState.references = {"notes": chunk.data.context, "online": chunk.data.onlineContext};
} else if (chunk.type === 'message') {
const chunkData = chunk.data;
if (typeof chunkData === 'object' && chunkData !== null) {
// If chunkData is already a JSON object
handleJsonResponse(chunkData);
} else if (typeof chunkData === 'string' && chunkData.trim()?.startsWith("{") && chunkData.trim()?.endsWith("}")) {
// Try process chunk data as if it is a JSON object
try {
const jsonData = JSON.parse(chunkData.trim());
handleJsonResponse(jsonData);
} catch (e) {
chatMessageState.rawResponse += chunkData;
handleStreamResponse(chatMessageState.newResponseTextEl, chatMessageState.rawResponse, chatMessageState.rawQuery, chatMessageState.loadingEllipsis);
}
} else {
chatMessageState.rawResponse += chunkData;
handleStreamResponse(chatMessageState.newResponseTextEl, chatMessageState.rawResponse, chatMessageState.rawQuery, chatMessageState.loadingEllipsis);
}
}
}
function handleJsonResponse(jsonData) {
if (jsonData.image || jsonData.detail) {
chatMessageState.rawResponse = handleImageResponse(jsonData, chatMessageState.rawResponse);
} else if (jsonData.response) {
chatMessageState.rawResponse = jsonData.response;
}
if (chatMessageState.newResponseTextEl) {
chatMessageState.newResponseTextEl.innerHTML = "";
chatMessageState.newResponseTextEl.appendChild(formatHTMLMessage(chatMessageState.rawResponse));
}
}
async function readChatStream(response) {
if (!response.body) return;
const reader = response.body.getReader();
const decoder = new TextDecoder();
const eventDelimiter = '␃🔚␗';
let buffer = '';
while (true) {
const { value, done } = await reader.read();
// If the stream is done
if (done) {
// Process the last chunk
processMessageChunk(buffer);
buffer = '';
break;
}
// Read chunk from stream and append it to the buffer
const chunk = decoder.decode(value, { stream: true });
console.debug("Raw Chunk:", chunk)
// Start buffering chunks until complete event is received
buffer += chunk;
// Once the buffer contains a complete event
let newEventIndex;
while ((newEventIndex = buffer.indexOf(eventDelimiter)) !== -1) {
// Extract the event from the buffer
const event = buffer.slice(0, newEventIndex);
buffer = buffer.slice(newEventIndex + eventDelimiter.length);
// Process the event
if (event) processMessageChunk(event);
}
}
}
function incrementalChat(event) {
@ -1069,17 +1129,13 @@ To get started, just start typing below. You can also type / to see a list of co
window.onload = loadChat;
function setupWebSocket(isVoice=false) {
let chatBody = document.getElementById("chat-body");
let wsProtocol = window.location.protocol === 'https:' ? 'wss:' : 'ws:';
let webSocketUrl = `${wsProtocol}//${window.location.host}/api/chat/ws`;
function initMessageState(isVoice=false) {
if (waitingForLocation) {
console.debug("Waiting for location data to be fetched. Will setup WebSocket once location data is available.");
return;
}
websocketState = {
chatMessageState = {
newResponseTextEl: null,
newResponseEl: null,
loadingEllipsis: null,
@ -1088,174 +1144,8 @@ To get started, just start typing below. You can also type / to see a list of co
rawQuery: "",
isVoice: isVoice,
}
if (chatBody.dataset.conversationId) {
webSocketUrl += `?conversation_id=${chatBody.dataset.conversationId}`;
webSocketUrl += (!!region && !!city && !!countryName) && !!timezone ? `&region=${region}&city=${city}&country=${countryName}&timezone=${timezone}` : '';
websocket = new WebSocket(webSocketUrl);
websocket.onmessage = function(event) {
// Get the last element in the chat-body
let chunk = event.data;
if (chunk == "start_llm_response") {
console.log("Started streaming", new Date());
} else if (chunk == "end_llm_response") {
console.log("Stopped streaming", new Date());
// Automatically respond with voice if the subscribed user has sent voice message
if (websocketState.isVoice && "{{ is_active }}" == "True")
textToSpeech(websocketState.rawResponse);
// Append any references after all the data has been streamed
finalizeChatBodyResponse(websocketState.references, websocketState.newResponseTextEl);
const liveQuery = websocketState.rawQuery;
// Reset variables
websocketState = {
newResponseTextEl: null,
newResponseEl: null,
loadingEllipsis: null,
references: {},
rawResponse: "",
rawQuery: liveQuery,
isVoice: false,
}
} else {
try {
if (chunk.includes("application/json"))
{
chunk = JSON.parse(chunk);
}
} catch (error) {
// If the chunk is not a JSON object, continue.
}
const contentType = chunk["content-type"]
if (contentType === "application/json") {
// Handle JSON response
try {
if (chunk.image || chunk.detail) {
({rawResponse, references } = handleImageResponse(chunk, websocketState.rawResponse));
websocketState.rawResponse = rawResponse;
websocketState.references = references;
} else if (chunk.type == "status") {
handleStreamResponse(websocketState.newResponseTextEl, chunk.message, websocketState.rawQuery, null, false);
} else if (chunk.type == "rate_limit") {
handleStreamResponse(websocketState.newResponseTextEl, chunk.message, websocketState.rawQuery, websocketState.loadingEllipsis, true);
} else {
rawResponse = chunk.response;
}
} catch (error) {
// If the chunk is not a JSON object, just display it as is
websocketState.rawResponse += chunk;
} finally {
if (chunk.type != "status" && chunk.type != "rate_limit") {
addMessageToChatBody(websocketState.rawResponse, websocketState.newResponseTextEl, websocketState.references);
}
}
} else {
// Handle streamed response of type text/event-stream or text/plain
if (chunk && chunk.includes("### compiled references:")) {
({ rawResponse, references } = handleCompiledReferences(websocketState.newResponseTextEl, chunk, websocketState.references, websocketState.rawResponse));
websocketState.rawResponse = rawResponse;
websocketState.references = references;
} else {
// If the chunk is not a JSON object, just display it as is
websocketState.rawResponse += chunk;
if (websocketState.newResponseTextEl) {
handleStreamResponse(websocketState.newResponseTextEl, websocketState.rawResponse, websocketState.rawQuery, websocketState.loadingEllipsis);
}
}
// Scroll to bottom of chat window as chat response is streamed
document.getElementById("chat-body").scrollTop = document.getElementById("chat-body").scrollHeight;
};
}
}
};
websocket.onclose = function(event) {
websocket = null;
console.log("WebSocket is closed now.");
let setupWebSocketButton = document.createElement("button");
setupWebSocketButton.textContent = "Reconnect to Server";
setupWebSocketButton.onclick = setupWebSocket;
let statusDotIcon = document.getElementById("connection-status-icon");
statusDotIcon.style.backgroundColor = "red";
let statusDotText = document.getElementById("connection-status-text");
statusDotText.innerHTML = "";
statusDotText.style.marginTop = "5px";
statusDotText.appendChild(setupWebSocketButton);
}
websocket.onerror = function(event) {
console.log("WebSocket error observed:", event);
}
websocket.onopen = function(event) {
console.log("WebSocket is open now.")
let statusDotIcon = document.getElementById("connection-status-icon");
statusDotIcon.style.backgroundColor = "green";
let statusDotText = document.getElementById("connection-status-text");
statusDotText.textContent = "Connected to Server";
}
}
function sendMessageViaWebSocket(isVoice=false) {
let chatBody = document.getElementById("chat-body");
var query = document.getElementById("chat-input").value.trim();
console.log(`Query: ${query}`);
if (userMessages.length >= 10) {
userMessages.shift();
}
userMessages.push(query);
resetUserMessageIndex();
// Add message by user to chat body
renderMessage(query, "you");
document.getElementById("chat-input").value = "";
autoResize();
document.getElementById("chat-input").setAttribute("disabled", "disabled");
let newResponseEl = document.createElement("div");
newResponseEl.classList.add("chat-message", "khoj");
newResponseEl.attributes["data-meta"] = "🏮 Khoj at " + formatDate(new Date());
chatBody.appendChild(newResponseEl);
let newResponseTextEl = document.createElement("div");
newResponseTextEl.classList.add("chat-message-text", "khoj");
newResponseEl.appendChild(newResponseTextEl);
// Temporary status message to indicate that Khoj is thinking
let loadingEllipsis = createLoadingEllipse();
newResponseTextEl.appendChild(loadingEllipsis);
document.getElementById("chat-body").scrollTop = document.getElementById("chat-body").scrollHeight;
let chatTooltip = document.getElementById("chat-tooltip");
chatTooltip.style.display = "none";
let chatInput = document.getElementById("chat-input");
chatInput.classList.remove("option-enabled");
// Call specified Khoj API
websocket.send(query);
let rawResponse = "";
let references = {};
websocketState = {
newResponseTextEl,
newResponseEl,
loadingEllipsis,
references,
rawResponse,
rawQuery: query,
isVoice: isVoice,
}
}
var userMessages = [];
var userMessageIndex = -1;
function loadChat() {
@ -1265,7 +1155,7 @@ To get started, just start typing below. You can also type / to see a list of co
let chatHistoryUrl = `/api/chat/history?client=web`;
if (chatBody.dataset.conversationId) {
chatHistoryUrl += `&conversation_id=${chatBody.dataset.conversationId}`;
setupWebSocket();
initMessageState();
loadFileFiltersFromConversation();
}
@ -1305,7 +1195,7 @@ To get started, just start typing below. You can also type / to see a list of co
let chatBody = document.getElementById("chat-body");
chatBody.dataset.conversationId = response.conversation_id;
loadFileFiltersFromConversation();
setupWebSocket();
initMessageState();
chatBody.dataset.conversationTitle = response.slug || `New conversation 🌱`;
let agentMetadata = response.agent;

View file

@ -206,7 +206,7 @@ def set_state(args):
state.host = args.host
state.port = args.port
state.anonymous_mode = args.anonymous_mode
state.khoj_version = version("khoj-assistant")
state.khoj_version = version("khoj")
state.chat_on_gpu = args.chat_on_gpu

View file

@ -36,7 +36,7 @@ def extract_questions_anthropic(
# Extract Past User Message and Inferred Questions from Conversation Log
chat_history = "".join(
[
f'Q: {chat["intent"]["query"]}\nKhoj: {{"queries": {chat["intent"].get("inferred-queries") or list([chat["intent"]["query"]])}}}\nA: {chat["message"]}\n\n'
f'User: {chat["intent"]["query"]}\nAssistant: {{"queries": {chat["intent"].get("inferred-queries") or list([chat["intent"]["query"]])}}}\nA: {chat["message"]}\n\n'
for chat in conversation_log.get("chat", [])[-4:]
if chat["by"] == "khoj" and "text-to-image" not in chat["intent"].get("type")
]
@ -135,17 +135,23 @@ def converse_anthropic(
Converse with user using Anthropic's Claude
"""
# Initialize Variables
current_date = datetime.now().strftime("%Y-%m-%d")
current_date = datetime.now()
compiled_references = "\n\n".join({f"# {item}" for item in references})
conversation_primer = prompts.query_prompt.format(query=user_query)
if agent and agent.personality:
system_prompt = prompts.custom_personality.format(
name=agent.name, bio=agent.personality, current_date=current_date
name=agent.name,
bio=agent.personality,
current_date=current_date.strftime("%Y-%m-%d"),
day_of_week=current_date.strftime("%A"),
)
else:
system_prompt = prompts.personality.format(current_date=current_date)
system_prompt = prompts.personality.format(
current_date=current_date.strftime("%Y-%m-%d"),
day_of_week=current_date.strftime("%A"),
)
if location_data:
location = f"{location_data.city}, {location_data.region}, {location_data.country}"

View file

@ -55,6 +55,7 @@ def extract_questions_offline(
chat_history += f"Q: {chat['intent']['query']}\n"
chat_history += f"Khoj: {chat['message']}\n\n"
# Get dates relative to today for prompt creation
today = datetime.today()
yesterday = (today - timedelta(days=1)).strftime("%Y-%m-%d")
last_year = today.year - 1
@ -62,11 +63,13 @@ def extract_questions_offline(
query=text,
chat_history=chat_history,
current_date=today.strftime("%Y-%m-%d"),
day_of_week=today.strftime("%A"),
yesterday_date=yesterday,
last_year=last_year,
this_year=today.year,
location=location,
)
messages = generate_chatml_messages_with_context(
example_questions, model_name=model, loaded_model=offline_chat_model, max_prompt_size=max_prompt_size
)
@ -74,7 +77,7 @@ def extract_questions_offline(
state.chat_lock.acquire()
try:
response = send_message_to_model_offline(
messages, loaded_model=offline_chat_model, max_prompt_size=max_prompt_size
messages, loaded_model=offline_chat_model, model=model, max_prompt_size=max_prompt_size
)
finally:
state.chat_lock.release()
@ -96,7 +99,7 @@ def extract_questions_offline(
except:
logger.warning(f"Llama returned invalid JSON. Falling back to using user message as search query.\n{response}")
return all_questions
logger.debug(f"Extracted Questions by Llama: {questions}")
logger.debug(f"Questions extracted by {model}: {questions}")
return questions
@ -144,14 +147,20 @@ def converse_offline(
offline_chat_model = loaded_model or download_model(model, max_tokens=max_prompt_size)
compiled_references_message = "\n\n".join({f"{item['compiled']}" for item in references})
current_date = datetime.now().strftime("%Y-%m-%d")
current_date = datetime.now()
if agent and agent.personality:
system_prompt = prompts.custom_system_prompt_offline_chat.format(
name=agent.name, bio=agent.personality, current_date=current_date
name=agent.name,
bio=agent.personality,
current_date=current_date.strftime("%Y-%m-%d"),
day_of_week=current_date.strftime("%A"),
)
else:
system_prompt = prompts.system_prompt_offline_chat.format(current_date=current_date)
system_prompt = prompts.system_prompt_offline_chat.format(
current_date=current_date.strftime("%Y-%m-%d"),
day_of_week=current_date.strftime("%A"),
)
conversation_primer = prompts.query_prompt.format(query=user_query)
@ -177,9 +186,9 @@ def converse_offline(
if online_results[result].get("webpages"):
simplified_online_results[result] = online_results[result]["webpages"]
conversation_primer = f"{prompts.online_search_conversation.format(online_results=str(simplified_online_results))}\n{conversation_primer}"
conversation_primer = f"{prompts.online_search_conversation_offline.format(online_results=str(simplified_online_results))}\n{conversation_primer}"
if not is_none_or_empty(compiled_references_message):
conversation_primer = f"{prompts.notes_conversation_offline.format(references=compiled_references_message)}\n{conversation_primer}"
conversation_primer = f"{prompts.notes_conversation_offline.format(references=compiled_references_message)}\n\n{conversation_primer}"
# Setup Prompt with Primer or Conversation History
messages = generate_chatml_messages_with_context(
@ -192,6 +201,9 @@ def converse_offline(
tokenizer_name=tokenizer_name,
)
truncated_messages = "\n".join({f"{message.content[:70]}..." for message in messages})
logger.debug(f"Conversation Context for {model}: {truncated_messages}")
g = ThreadedGenerator(references, online_results, completion_func=completion_func)
t = Thread(target=llm_thread, args=(g, messages, offline_chat_model, max_prompt_size))
t.start()

View file

@ -24,6 +24,8 @@ def download_model(repo_id: str, filename: str = "*Q4_K_M.gguf", max_tokens: int
# Add chat format if known
if "llama-3" in repo_id.lower():
kwargs["chat_format"] = "llama-3"
elif "gemma-2" in repo_id.lower():
kwargs["chat_format"] = "gemma"
# Check if the model is already downloaded
model_path = load_model_from_cache(repo_id, filename)

View file

@ -125,17 +125,23 @@ def converse(
Converse with user using OpenAI's ChatGPT
"""
# Initialize Variables
current_date = datetime.now().strftime("%Y-%m-%d")
current_date = datetime.now()
compiled_references = "\n\n".join({f"# {item['compiled']}" for item in references})
conversation_primer = prompts.query_prompt.format(query=user_query)
if agent and agent.personality:
system_prompt = prompts.custom_personality.format(
name=agent.name, bio=agent.personality, current_date=current_date
name=agent.name,
bio=agent.personality,
current_date=current_date.strftime("%Y-%m-%d"),
day_of_week=current_date.strftime("%A"),
)
else:
system_prompt = prompts.personality.format(current_date=current_date)
system_prompt = prompts.personality.format(
current_date=current_date.strftime("%Y-%m-%d"),
day_of_week=current_date.strftime("%A"),
)
if location_data:
location = f"{location_data.city}, {location_data.region}, {location_data.country}"

View file

@ -19,8 +19,8 @@ You were created by Khoj Inc. with the following capabilities:
- Sometimes the user will share personal information that needs to be remembered, like an account ID or a residential address. These can be acknowledged with a simple "Got it" or "Okay".
- Provide inline references to quotes from the user's notes or any web pages you refer to in your responses in markdown format. For example, "The farmer had ten sheep. [1](https://example.com)". *ALWAYS CITE YOUR SOURCES AND PROVIDE REFERENCES*. Add them inline to directly support your claim.
Note: More information about you, the company or Khoj apps for download can be found at https://khoj.dev.
Today is {current_date} in UTC.
Note: More information about you, the company or Khoj apps can be found at https://khoj.dev.
Today is {day_of_week}, {current_date} in UTC.
""".strip()
)
@ -39,7 +39,7 @@ You were created by Khoj Inc. with the following capabilities:
- Ask crisp follow-up questions to get additional context, when the answer cannot be inferred from the provided notes or past conversations.
- Sometimes the user will share personal information that needs to be remembered, like an account ID or a residential address. These can be acknowledged with a simple "Got it" or "Okay".
Today is {current_date} in UTC.
Today is {day_of_week}, {current_date} in UTC.
Instructions:\n{bio}
""".strip()
@ -79,10 +79,12 @@ You are Khoj, a smart, inquisitive and helpful personal assistant.
- Use your general knowledge and past conversation with the user as context to inform your responses.
- If you do not know the answer, say 'I don't know.'
- Think step-by-step and ask questions to get the necessary information to answer the user's question.
- Ask crisp follow-up questions to get additional context, when the answer cannot be inferred from the provided information or past conversations.
- Do not print verbatim Notes unless necessary.
Today is {current_date} in UTC.
""".strip()
Note: More information about you, the company or Khoj apps can be found at https://khoj.dev.
Today is {day_of_week}, {current_date} in UTC.
""".strip()
)
custom_system_prompt_offline_chat = PromptTemplate.from_template(
@ -91,12 +93,14 @@ You are {name}, a personal agent on Khoj.
- Use your general knowledge and past conversation with the user as context to inform your responses.
- If you do not know the answer, say 'I don't know.'
- Think step-by-step and ask questions to get the necessary information to answer the user's question.
- Ask crisp follow-up questions to get additional context, when the answer cannot be inferred from the provided information or past conversations.
- Do not print verbatim Notes unless necessary.
Today is {current_date} in UTC.
Note: More information about you, the company or Khoj apps can be found at https://khoj.dev.
Today is {day_of_week}, {current_date} in UTC.
Instructions:\n{bio}
""".strip()
""".strip()
)
## Notes Conversation
@ -106,13 +110,15 @@ notes_conversation = PromptTemplate.from_template(
Use my personal notes and our past conversations to inform your response.
Ask crisp follow-up questions to get additional context, when a helpful response cannot be provided from the provided notes or past conversations.
Notes:
User's Notes:
{references}
""".strip()
)
notes_conversation_offline = PromptTemplate.from_template(
"""
Use my personal notes and our past conversations to inform your response.
User's Notes:
{references}
""".strip()
@ -174,6 +180,15 @@ Information from the internet:
""".strip()
)
online_search_conversation_offline = PromptTemplate.from_template(
"""
Use this up-to-date information from the internet to inform your response.
Information from the internet:
{online_results}
""".strip()
)
## Query prompt
## --
query_prompt = PromptTemplate.from_template(
@ -186,15 +201,16 @@ Query: {query}""".strip()
## --
extract_questions_offline = PromptTemplate.from_template(
"""
You are Khoj, an extremely smart and helpful search assistant with the ability to retrieve information from the user's notes. Construct search queries to retrieve relevant information to answer the user's question.
- You will be provided past questions(Q) and answers(A) for context.
You are Khoj, an extremely smart and helpful search assistant with the ability to retrieve information from the user's notes. Disregard online search requests.
Construct search queries to retrieve relevant information to answer the user's question.
- You will be provided past questions(Q) and answers(Khoj) for context.
- Try to be as specific as possible. Instead of saying "they" or "it" or "he", use proper nouns like name of the person or thing you are referring to.
- Add as much context from the previous questions and answers as required into your search queries.
- Break messages into multiple search queries when required to retrieve the relevant information.
- Add date filters to your search queries from questions and answers when required to retrieve the relevant information.
- Share relevant search queries as a JSON list of strings. Do not say anything else.
Current Date: {current_date}
Current Date: {day_of_week}, {current_date}
User's Location: {location}
Examples:
@ -232,7 +248,8 @@ Q: {query}
extract_questions = PromptTemplate.from_template(
"""
You are Khoj, an extremely smart and helpful document search assistant with only the ability to retrieve information from the user's notes. Disregard online search requests. Construct search queries to retrieve relevant information to answer the user's question.
You are Khoj, an extremely smart and helpful document search assistant with only the ability to retrieve information from the user's notes. Disregard online search requests.
Construct search queries to retrieve relevant information to answer the user's question.
- You will be provided past questions(Q) and answers(A) for context.
- Add as much context from the previous questions and answers as required into your search queries.
- Break messages into multiple search queries when required to retrieve the relevant information.
@ -282,8 +299,9 @@ Khoj:
extract_questions_anthropic_system_prompt = PromptTemplate.from_template(
"""
You are Khoj, an extremely smart and helpful document search assistant with only the ability to retrieve information from the user's notes. Disregard online search requests. Construct search queries to retrieve relevant information to answer the user's question.
- You will be provided past questions(Q) and answers(A) for context.
You are Khoj, an extremely smart and helpful document search assistant with only the ability to retrieve information from the user's notes. Disregard online search requests.
Construct search queries to retrieve relevant information to answer the user's question.
- You will be provided past questions(User), extracted queries(Assistant) and answers(A) for context.
- Add as much context from the previous questions and answers as required into your search queries.
- Break messages into multiple search queries when required to retrieve the relevant information.
- Add date filters to your search queries from questions and answers when required to retrieve the relevant information.
@ -297,15 +315,19 @@ Here are some examples of how you can construct search queries to answer the use
User: How was my trip to Cambodia?
Assistant: {{"queries": ["How was my trip to Cambodia?"]}}
A: The trip was amazing. You went to the Angkor Wat temple and it was beautiful.
User: What national parks did I go to last year?
Assistant: {{"queries": ["National park I visited in {last_new_year} dt>='{last_new_year_date}' dt<'{current_new_year_date}'"]}}
A: You visited the Grand Canyon and Yellowstone National Park in {last_new_year}.
User: How can you help me?
Assistant: {{"queries": ["Social relationships", "Physical and mental health", "Education and career", "Personal life goals and habits"]}}
A: I can help you live healthier and happier across work and personal life
User: Who all did I meet here yesterday?
Assistant: {{"queries": ["Met in {location} on {yesterday_date} dt>='{yesterday_date}' dt<'{current_date}'"]}}
A: Yesterday's note mentions your visit to your local beach with Ram and Shyam.
""".strip()
)
@ -319,7 +341,11 @@ Assistant:
""".strip()
)
system_prompt_extract_relevant_information = """As a professional analyst, create a comprehensive report of the most relevant information from a web page in response to a user's query. The text provided is directly from within the web page. The report you create should be multiple paragraphs, and it should represent the content of the website. Tell the user exactly what the website says in response to their query, while adhering to these guidelines:
system_prompt_extract_relevant_information = """
As a professional analyst, create a comprehensive report of the most relevant information from a web page in response to a user's query.
The text provided is directly from within the web page.
The report you create should be multiple paragraphs, and it should represent the content of the website.
Tell the user exactly what the website says in response to their query, while adhering to these guidelines:
1. Answer the user's query as specifically as possible. Include many supporting details from the website.
2. Craft a report that is detailed, thorough, in-depth, and complex, while maintaining clarity.
@ -340,7 +366,11 @@ Collate only relevant information from the website to answer the target query.
""".strip()
)
system_prompt_extract_relevant_summary = """As a professional analyst, create a comprehensive report of the most relevant information from the document in response to a user's query. The text provided is directly from within the document. The report you create should be multiple paragraphs, and it should represent the content of the document. Tell the user exactly what the document says in response to their query, while adhering to these guidelines:
system_prompt_extract_relevant_summary = """
As a professional analyst, create a comprehensive report of the most relevant information from the document in response to a user's query.
The text provided is directly from within the document.
The report you create should be multiple paragraphs, and it should represent the content of the document.
Tell the user exactly what the document says in response to their query, while adhering to these guidelines:
1. Answer the user's query as specifically as possible. Include many supporting details from the document.
2. Craft a report that is detailed, thorough, in-depth, and complex, while maintaining clarity.
@ -363,11 +393,13 @@ Collate only relevant information from the document to answer the target query.
pick_relevant_output_mode = PromptTemplate.from_template(
"""
You are Khoj, an excellent analyst for selecting the correct way to respond to a user's query. You have access to a limited set of modes for your response. You can only use one of these modes.
You are Khoj, an excellent analyst for selecting the correct way to respond to a user's query.
You have access to a limited set of modes for your response.
You can only use one of these modes.
{modes}
Here are some example responses:
Here are some examples:
Example:
Chat History:
@ -383,7 +415,7 @@ User: I'm having trouble deciding which laptop to get. I want something with at
AI: I can help with that. I see online that there is a new model of the Dell XPS 15 that meets your requirements.
Q: What are the specs of the new Dell XPS 15?
Khoj: default
Khoj: text
Example:
Chat History:
@ -391,7 +423,7 @@ User: Where did I go on my last vacation?
AI: You went to Jordan and visited Petra, the Dead Sea, and Wadi Rum.
Q: Remind me who did I go with on that trip?
Khoj: default
Khoj: text
Example:
Chat History:
@ -399,7 +431,7 @@ User: How's the weather outside? Current Location: Bali, Indonesia
AI: It's currently 28°C and partly cloudy in Bali.
Q: Share a painting using the weather for Bali every morning.
Khoj: reminder
Khoj: automation
Now it's your turn to pick the mode you would like to use to answer the user's question. Provide your response as a string.
@ -422,7 +454,7 @@ Which of the data sources listed below you would use to answer the user's questi
{tools}
Here are some example responses:
Here are some examples:
Example:
Chat History:
@ -533,10 +565,10 @@ You are Khoj, an advanced google search assistant. You are tasked with construct
- Break messages into multiple search queries when required to retrieve the relevant information.
- Use site: google search operators when appropriate
- You have access to the the whole internet to retrieve information.
- Official, up-to-date information about you, Khoj, is available at site:khoj.dev
- Official, up-to-date information about you, Khoj, is available at site:khoj.dev, github or pypi.
What Google searches, if any, will you need to perform to answer the user's question?
Provide search queries as a list of strings in a JSON object.
Provide search queries as a list of strings in a JSON object. Do not wrap the json in a codeblock.
Current Date: {current_date}
User's Location: {location}
@ -589,7 +621,6 @@ Q: How many oranges would fit in NASA's Saturn V rocket?
Khoj: {{"queries": ["volume of an orange", "volume of saturn v rocket"]}}
Now it's your turn to construct Google search queries to answer the user's question. Provide them as a list of strings in a JSON object. Do not say anything else.
Now it's your turn to construct a search query for Google to answer the user's question.
History:
{chat_history}

View file

@ -62,10 +62,6 @@ class ThreadedGenerator:
self.queue.put(data)
def close(self):
if self.compiled_references and len(self.compiled_references) > 0:
self.queue.put(f"### compiled references:{json.dumps(self.compiled_references)}")
if self.online_results and len(self.online_results) > 0:
self.queue.put(f"### compiled references:{json.dumps(self.online_results)}")
self.queue.put(StopIteration)
@ -186,7 +182,7 @@ def generate_chatml_messages_with_context(
def truncate_messages(
messages: list[ChatMessage],
max_prompt_size,
max_prompt_size: int,
model_name: str,
loaded_model: Optional[Llama] = None,
tokenizer_name=None,
@ -232,7 +228,8 @@ def truncate_messages(
tokens = sum([len(encoder.encode(message.content)) for message in messages if type(message.content) == str])
# Drop older messages until under max supported prompt size by model
while (tokens + system_message_tokens) > max_prompt_size and len(messages) > 1:
# Reserves 4 tokens to demarcate each message (e.g <|im_start|>user, <|im_end|>, <|endoftext|> etc.)
while (tokens + system_message_tokens + 4 * len(messages)) > max_prompt_size and len(messages) > 1:
messages.pop()
tokens = sum([len(encoder.encode(message.content)) for message in messages if type(message.content) == str])
@ -254,6 +251,8 @@ def truncate_messages(
f"Truncate current message to fit within max prompt size of {max_prompt_size} supported by {model_name} model:\n {truncated_message}"
)
if system_message:
system_message.role = "user" if "gemma-2" in model_name else "system"
return messages + [system_message] if system_message else messages

View file

@ -11,6 +11,7 @@ from bs4 import BeautifulSoup
from markdownify import markdownify
from khoj.routers.helpers import (
ChatEvent,
extract_relevant_info,
generate_online_subqueries,
infer_webpage_urls,
@ -56,7 +57,8 @@ async def search_online(
query += " ".join(custom_filters)
if not is_internet_connected():
logger.warn("Cannot search online as not connected to internet")
return {}
yield {}
return
# Breakdown the query into subqueries to get the correct answer
subqueries = await generate_online_subqueries(query, conversation_history, location)
@ -66,7 +68,8 @@ async def search_online(
logger.info(f"🌐 Searching the Internet for {list(subqueries)}")
if send_status_func:
subqueries_str = "\n- " + "\n- ".join(list(subqueries))
await send_status_func(f"**🌐 Searching the Internet for**: {subqueries_str}")
async for event in send_status_func(f"**🌐 Searching the Internet for**: {subqueries_str}"):
yield {ChatEvent.STATUS: event}
with timer(f"Internet searches for {list(subqueries)} took", logger):
search_func = search_with_google if SERPER_DEV_API_KEY else search_with_jina
@ -89,7 +92,8 @@ async def search_online(
logger.info(f"🌐👀 Reading web pages at: {list(webpage_links)}")
if send_status_func:
webpage_links_str = "\n- " + "\n- ".join(list(webpage_links))
await send_status_func(f"**📖 Reading web pages**: {webpage_links_str}")
async for event in send_status_func(f"**📖 Reading web pages**: {webpage_links_str}"):
yield {ChatEvent.STATUS: event}
tasks = [read_webpage_and_extract_content(subquery, link, content) for link, subquery, content in webpages]
results = await asyncio.gather(*tasks)
@ -98,7 +102,7 @@ async def search_online(
if webpage_extract is not None:
response_dict[subquery]["webpages"] = {"link": url, "snippet": webpage_extract}
return response_dict
yield response_dict
async def search_with_google(query: str) -> Tuple[str, Dict[str, List[Dict]]]:
@ -127,13 +131,15 @@ async def read_webpages(
"Infer web pages to read from the query and extract relevant information from them"
logger.info(f"Inferring web pages to read")
if send_status_func:
await send_status_func(f"**🧐 Inferring web pages to read**")
async for event in send_status_func(f"**🧐 Inferring web pages to read**"):
yield {ChatEvent.STATUS: event}
urls = await infer_webpage_urls(query, conversation_history, location)
logger.info(f"Reading web pages at: {urls}")
if send_status_func:
webpage_links_str = "\n- " + "\n- ".join(list(urls))
await send_status_func(f"**📖 Reading web pages**: {webpage_links_str}")
async for event in send_status_func(f"**📖 Reading web pages**: {webpage_links_str}"):
yield {ChatEvent.STATUS: event}
tasks = [read_webpage_and_extract_content(query, url) for url in urls]
results = await asyncio.gather(*tasks)
@ -141,7 +147,7 @@ async def read_webpages(
response[query]["webpages"] = [
{"query": q, "link": url, "snippet": web_extract} for q, web_extract, url in results if web_extract is not None
]
return response
yield response
async def read_webpage_and_extract_content(

View file

@ -37,6 +37,7 @@ from khoj.processor.conversation.openai.gpt import extract_questions
from khoj.processor.conversation.openai.whisper import transcribe_audio
from khoj.routers.helpers import (
ApiUserRateLimiter,
ChatEvent,
CommonQueryParams,
ConversationCommandRateLimiter,
acreate_title_from_query,
@ -342,11 +343,13 @@ async def extract_references_and_questions(
not ConversationCommand.Notes in conversation_commands
and not ConversationCommand.Default in conversation_commands
):
return compiled_references, inferred_queries, q
yield compiled_references, inferred_queries, q
return
if not await sync_to_async(EntryAdapters.user_has_entries)(user=user):
logger.debug("No documents in knowledge base. Use a Khoj client to sync and chat with your docs.")
return compiled_references, inferred_queries, q
yield compiled_references, inferred_queries, q
return
# Extract filter terms from user message
defiltered_query = q
@ -357,11 +360,12 @@ async def extract_references_and_questions(
if not conversation:
logger.error(f"Conversation with id {conversation_id} not found.")
return compiled_references, inferred_queries, defiltered_query
yield compiled_references, inferred_queries, defiltered_query
return
filters_in_query += " ".join([f'file:"{filter}"' for filter in conversation.file_filters])
using_offline_chat = False
print(f"Filters in query: {filters_in_query}")
logger.debug(f"Filters in query: {filters_in_query}")
# Infer search queries from user message
with timer("Extracting search queries took", logger):
@ -379,6 +383,7 @@ async def extract_references_and_questions(
inferred_queries = extract_questions_offline(
defiltered_query,
model=chat_model,
loaded_model=loaded_model,
conversation_log=meta_log,
should_extract_questions=True,
@ -416,7 +421,8 @@ async def extract_references_and_questions(
logger.info(f"🔍 Searching knowledge base with queries: {inferred_queries}")
if send_status_func:
inferred_queries_str = "\n- " + "\n- ".join(inferred_queries)
await send_status_func(f"**Searching Documents for:** {inferred_queries_str}")
async for event in send_status_func(f"**Searching Documents for:** {inferred_queries_str}"):
yield {ChatEvent.STATUS: event}
for query in inferred_queries:
n_items = min(n, 3) if using_offline_chat else n
search_results.extend(
@ -435,7 +441,7 @@ async def extract_references_and_questions(
{"compiled": item.additional["compiled"], "file": item.additional["file"]} for item in search_results
]
return compiled_references, inferred_queries, defiltered_query
yield compiled_references, inferred_queries, defiltered_query
@api.get("/health", response_class=Response)

View file

@ -1,17 +1,17 @@
import asyncio
import json
import logging
import math
import time
from datetime import datetime
from typing import Dict, Optional
from functools import partial
from typing import Any, Dict, List, Optional
from urllib.parse import unquote
from asgiref.sync import sync_to_async
from fastapi import APIRouter, Depends, HTTPException, Request, WebSocket
from fastapi import APIRouter, Depends, HTTPException, Request
from fastapi.requests import Request
from fastapi.responses import Response, StreamingResponse
from starlette.authentication import requires
from starlette.websockets import WebSocketDisconnect
from websockets import ConnectionClosedOK
from khoj.app.settings import ALLOWED_HOSTS
from khoj.database.adapters import (
@ -22,19 +22,15 @@ from khoj.database.adapters import (
aget_user_name,
)
from khoj.database.models import KhojUser
from khoj.processor.conversation.prompts import (
help_message,
no_entries_found,
no_notes_found,
)
from khoj.processor.conversation.prompts import help_message, no_entries_found
from khoj.processor.conversation.utils import save_to_conversation_log
from khoj.processor.speech.text_to_speech import generate_text_to_speech
from khoj.processor.tools.online_search import read_webpages, search_online
from khoj.routers.api import extract_references_and_questions
from khoj.routers.helpers import (
ApiUserRateLimiter,
ChatEvent,
CommonQueryParams,
CommonQueryParamsClass,
ConversationCommandRateLimiter,
agenerate_chat_response,
aget_relevant_information_sources,
@ -519,141 +515,142 @@ async def set_conversation_title(
)
@api_chat.websocket("/ws")
async def websocket_endpoint(
websocket: WebSocket,
conversation_id: int,
@api_chat.get("")
async def chat(
request: Request,
common: CommonQueryParams,
q: str,
n: int = 7,
d: float = 0.18,
stream: Optional[bool] = False,
title: Optional[str] = None,
conversation_id: Optional[int] = None,
city: Optional[str] = None,
region: Optional[str] = None,
country: Optional[str] = None,
timezone: Optional[str] = None,
rate_limiter_per_minute=Depends(
ApiUserRateLimiter(requests=5, subscribed_requests=60, window=60, slug="chat_minute")
),
rate_limiter_per_day=Depends(
ApiUserRateLimiter(requests=5, subscribed_requests=600, window=60 * 60 * 24, slug="chat_day")
),
):
connection_alive = True
async def event_generator(q: str):
start_time = time.perf_counter()
ttft = None
chat_metadata: dict = {}
connection_alive = True
user: KhojUser = request.user.object
event_delimiter = "␃🔚␗"
q = unquote(q)
async def send_status_update(message: str):
nonlocal connection_alive
if not connection_alive:
async def send_event(event_type: ChatEvent, data: str | dict):
nonlocal connection_alive, ttft
if not connection_alive or await request.is_disconnected():
connection_alive = False
logger.warn(f"User {user} disconnected from {common.client} client")
return
try:
if event_type == ChatEvent.END_LLM_RESPONSE:
collect_telemetry()
if event_type == ChatEvent.START_LLM_RESPONSE:
ttft = time.perf_counter() - start_time
if event_type == ChatEvent.MESSAGE:
yield data
elif event_type == ChatEvent.REFERENCES or stream:
yield json.dumps({"type": event_type.value, "data": data}, ensure_ascii=False)
except asyncio.CancelledError as e:
connection_alive = False
logger.warn(f"User {user} disconnected from {common.client} client: {e}")
return
except Exception as e:
connection_alive = False
logger.error(f"Failed to stream chat API response to {user} on {common.client}: {e}", exc_info=True)
return
finally:
if stream:
yield event_delimiter
async def send_llm_response(response: str):
async for result in send_event(ChatEvent.START_LLM_RESPONSE, ""):
yield result
async for result in send_event(ChatEvent.MESSAGE, response):
yield result
async for result in send_event(ChatEvent.END_LLM_RESPONSE, ""):
yield result
def collect_telemetry():
# Gather chat response telemetry
nonlocal chat_metadata
latency = time.perf_counter() - start_time
cmd_set = set([cmd.value for cmd in conversation_commands])
chat_metadata = chat_metadata or {}
chat_metadata["conversation_command"] = cmd_set
chat_metadata["agent"] = conversation.agent.slug if conversation.agent else None
chat_metadata["latency"] = f"{latency:.3f}"
chat_metadata["ttft_latency"] = f"{ttft:.3f}"
logger.info(f"Chat response time to first token: {ttft:.3f} seconds")
logger.info(f"Chat response total time: {latency:.3f} seconds")
update_telemetry_state(
request=request,
telemetry_type="api",
api="chat",
client=request.user.client_app,
user_agent=request.headers.get("user-agent"),
host=request.headers.get("host"),
metadata=chat_metadata,
)
conversation = await ConversationAdapters.aget_conversation_by_user(
user, client_application=request.user.client_app, conversation_id=conversation_id, title=title
)
if not conversation:
async for result in send_llm_response(f"Conversation {conversation_id} not found"):
yield result
return
status_packet = {
"type": "status",
"message": message,
"content-type": "application/json",
}
try:
await websocket.send_text(json.dumps(status_packet))
except ConnectionClosedOK:
connection_alive = False
logger.info(f"User {user} disconnected web socket. Emitting rest of responses to clear thread")
await is_ready_to_chat(user)
async def send_complete_llm_response(llm_response: str):
nonlocal connection_alive
if not connection_alive:
return
try:
await websocket.send_text("start_llm_response")
await websocket.send_text(llm_response)
await websocket.send_text("end_llm_response")
except ConnectionClosedOK:
connection_alive = False
logger.info(f"User {user} disconnected web socket. Emitting rest of responses to clear thread")
async def send_message(message: str):
nonlocal connection_alive
if not connection_alive:
return
try:
await websocket.send_text(message)
except ConnectionClosedOK:
connection_alive = False
logger.info(f"User {user} disconnected web socket. Emitting rest of responses to clear thread")
async def send_rate_limit_message(message: str):
nonlocal connection_alive
if not connection_alive:
return
status_packet = {
"type": "rate_limit",
"message": message,
"content-type": "application/json",
}
try:
await websocket.send_text(json.dumps(status_packet))
except ConnectionClosedOK:
connection_alive = False
logger.info(f"User {user} disconnected web socket. Emitting rest of responses to clear thread")
user: KhojUser = websocket.user.object
conversation = await ConversationAdapters.aget_conversation_by_user(
user, client_application=websocket.user.client_app, conversation_id=conversation_id
)
hourly_limiter = ApiUserRateLimiter(requests=5, subscribed_requests=60, window=60, slug="chat_minute")
daily_limiter = ApiUserRateLimiter(requests=5, subscribed_requests=600, window=60 * 60 * 24, slug="chat_day")
await is_ready_to_chat(user)
user_name = await aget_user_name(user)
location = None
if city or region or country:
location = LocationData(city=city, region=region, country=country)
await websocket.accept()
while connection_alive:
try:
if conversation:
await sync_to_async(conversation.refresh_from_db)(fields=["conversation_log"])
q = await websocket.receive_text()
# Refresh these because the connection to the database might have been closed
await conversation.arefresh_from_db()
except WebSocketDisconnect:
logger.debug(f"User {user} disconnected web socket")
break
try:
await sync_to_async(hourly_limiter)(websocket)
await sync_to_async(daily_limiter)(websocket)
except HTTPException as e:
await send_rate_limit_message(e.detail)
break
user_name = await aget_user_name(user)
location = None
if city or region or country:
location = LocationData(city=city, region=region, country=country)
if is_query_empty(q):
await send_message("start_llm_response")
await send_message(
"It seems like your query is incomplete. Could you please provide more details or specify what you need help with?"
)
await send_message("end_llm_response")
continue
async for result in send_llm_response("Please ask your query to get started."):
yield result
return
user_message_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
conversation_commands = [get_conversation_command(query=q, any_references=True)]
await send_status_update(f"**Understanding Query**: {q}")
async for result in send_event(ChatEvent.STATUS, f"**Understanding Query**: {q}"):
yield result
meta_log = conversation.conversation_log
is_automated_task = conversation_commands == [ConversationCommand.AutomatedTask]
used_slash_summarize = conversation_commands == [ConversationCommand.Summarize]
if conversation_commands == [ConversationCommand.Default] or is_automated_task:
conversation_commands = await aget_relevant_information_sources(q, meta_log, is_automated_task)
conversation_commands_str = ", ".join([cmd.value for cmd in conversation_commands])
await send_status_update(f"**Chose Data Sources to Search:** {conversation_commands_str}")
async for result in send_event(
ChatEvent.STATUS, f"**Chose Data Sources to Search:** {conversation_commands_str}"
):
yield result
mode = await aget_relevant_output_modes(q, meta_log, is_automated_task)
await send_status_update(f"**Decided Response Mode:** {mode.value}")
async for result in send_event(ChatEvent.STATUS, f"**Decided Response Mode:** {mode.value}"):
yield result
if mode not in conversation_commands:
conversation_commands.append(mode)
for cmd in conversation_commands:
await conversation_command_rate_limiter.update_and_check_if_valid(websocket, cmd)
await conversation_command_rate_limiter.update_and_check_if_valid(request, cmd)
q = q.replace(f"/{cmd.value}", "").strip()
used_slash_summarize = conversation_commands == [ConversationCommand.Summarize]
file_filters = conversation.file_filters if conversation else []
# Skip trying to summarize if
if (
@ -669,28 +666,37 @@ async def websocket_endpoint(
response_log = ""
if len(file_filters) == 0:
response_log = "No files selected for summarization. Please add files using the section on the left."
await send_complete_llm_response(response_log)
async for result in send_llm_response(response_log):
yield result
elif len(file_filters) > 1:
response_log = "Only one file can be selected for summarization."
await send_complete_llm_response(response_log)
async for result in send_llm_response(response_log):
yield result
else:
try:
file_object = await FileObjectAdapters.async_get_file_objects_by_name(user, file_filters[0])
if len(file_object) == 0:
response_log = "Sorry, we couldn't find the full text of this file. Please re-upload the document and try again."
await send_complete_llm_response(response_log)
continue
async for result in send_llm_response(response_log):
yield result
return
contextual_data = " ".join([file.raw_text for file in file_object])
if not q:
q = "Create a general summary of the file"
await send_status_update(f"**Constructing Summary Using:** {file_object[0].file_name}")
async for result in send_event(
ChatEvent.STATUS, f"**Constructing Summary Using:** {file_object[0].file_name}"
):
yield result
response = await extract_relevant_summary(q, contextual_data)
response_log = str(response)
await send_complete_llm_response(response_log)
async for result in send_llm_response(response_log):
yield result
except Exception as e:
response_log = "Error summarizing file."
logger.error(f"Error summarizing file for {user.email}: {e}", exc_info=True)
await send_complete_llm_response(response_log)
async for result in send_llm_response(response_log):
yield result
await sync_to_async(save_to_conversation_log)(
q,
response_log,
@ -698,16 +704,10 @@ async def websocket_endpoint(
meta_log,
user_message_time,
intent_type="summarize",
client_application=websocket.user.client_app,
client_application=request.user.client_app,
conversation_id=conversation_id,
)
update_telemetry_state(
request=websocket,
telemetry_type="api",
api="chat",
metadata={"conversation_command": conversation_commands[0].value},
)
continue
return
custom_filters = []
if conversation_commands == [ConversationCommand.Help]:
@ -717,8 +717,9 @@ async def websocket_endpoint(
conversation_config = await ConversationAdapters.aget_default_conversation_config()
model_type = conversation_config.model_type
formatted_help = help_message.format(model=model_type, version=state.khoj_version, device=get_device())
await send_complete_llm_response(formatted_help)
continue
async for result in send_llm_response(formatted_help):
yield result
return
# Adding specification to search online specifically on khoj.dev pages.
custom_filters.append("site:khoj.dev")
conversation_commands.append(ConversationCommand.Online)
@ -726,14 +727,14 @@ async def websocket_endpoint(
if ConversationCommand.Automation in conversation_commands:
try:
automation, crontime, query_to_run, subject = await create_automation(
q, timezone, user, websocket.url, meta_log
q, timezone, user, request.url, meta_log
)
except Exception as e:
logger.error(f"Error scheduling task {q} for {user.email}: {e}")
await send_complete_llm_response(
f"Unable to create automation. Ensure the automation doesn't already exist."
)
continue
error_message = f"Unable to create automation. Ensure the automation doesn't already exist."
async for result in send_llm_response(error_message):
yield result
return
llm_response = construct_automation_created_message(automation, crontime, query_to_run, subject)
await sync_to_async(save_to_conversation_log)(
@ -743,57 +744,78 @@ async def websocket_endpoint(
meta_log,
user_message_time,
intent_type="automation",
client_application=websocket.user.client_app,
client_application=request.user.client_app,
conversation_id=conversation_id,
inferred_queries=[query_to_run],
automation_id=automation.id,
)
common = CommonQueryParamsClass(
client=websocket.user.client_app,
user_agent=websocket.headers.get("user-agent"),
host=websocket.headers.get("host"),
)
update_telemetry_state(
request=websocket,
telemetry_type="api",
api="chat",
**common.__dict__,
)
await send_complete_llm_response(llm_response)
continue
async for result in send_llm_response(llm_response):
yield result
return
compiled_references, inferred_queries, defiltered_query = await extract_references_and_questions(
websocket, meta_log, q, 7, 0.18, conversation_id, conversation_commands, location, send_status_update
)
# Gather Context
## Extract Document References
compiled_references, inferred_queries, defiltered_query = [], [], None
async for result in extract_references_and_questions(
request,
meta_log,
q,
(n or 7),
(d or 0.18),
conversation_id,
conversation_commands,
location,
partial(send_event, ChatEvent.STATUS),
):
if isinstance(result, dict) and ChatEvent.STATUS in result:
yield result[ChatEvent.STATUS]
else:
compiled_references.extend(result[0])
inferred_queries.extend(result[1])
defiltered_query = result[2]
if compiled_references:
if not is_none_or_empty(compiled_references):
headings = "\n- " + "\n- ".join(set([c.get("compiled", c).split("\n")[0] for c in compiled_references]))
await send_status_update(f"**Found Relevant Notes**: {headings}")
async for result in send_event(ChatEvent.STATUS, f"**Found Relevant Notes**: {headings}"):
yield result
online_results: Dict = dict()
if conversation_commands == [ConversationCommand.Notes] and not await EntryAdapters.auser_has_entries(user):
await send_complete_llm_response(f"{no_entries_found.format()}")
continue
async for result in send_llm_response(f"{no_entries_found.format()}"):
yield result
return
if ConversationCommand.Notes in conversation_commands and is_none_or_empty(compiled_references):
conversation_commands.remove(ConversationCommand.Notes)
## Gather Online References
if ConversationCommand.Online in conversation_commands:
try:
online_results = await search_online(
defiltered_query, meta_log, location, send_status_update, custom_filters
)
async for result in search_online(
defiltered_query, meta_log, location, partial(send_event, ChatEvent.STATUS), custom_filters
):
if isinstance(result, dict) and ChatEvent.STATUS in result:
yield result[ChatEvent.STATUS]
else:
online_results = result
except ValueError as e:
logger.warning(f"Error searching online: {e}. Attempting to respond without online results")
await send_complete_llm_response(
f"Error searching online: {e}. Attempting to respond without online results"
)
continue
error_message = f"Error searching online: {e}. Attempting to respond without online results"
logger.warning(error_message)
async for result in send_llm_response(error_message):
yield result
return
## Gather Webpage References
if ConversationCommand.Webpage in conversation_commands:
try:
direct_web_pages = await read_webpages(defiltered_query, meta_log, location, send_status_update)
async for result in read_webpages(
defiltered_query, meta_log, location, partial(send_event, ChatEvent.STATUS)
):
if isinstance(result, dict) and ChatEvent.STATUS in result:
yield result[ChatEvent.STATUS]
else:
direct_web_pages = result
webpages = []
for query in direct_web_pages:
if online_results.get(query):
@ -803,38 +825,52 @@ async def websocket_endpoint(
for webpage in direct_web_pages[query]["webpages"]:
webpages.append(webpage["link"])
await send_status_update(f"**Read web pages**: {webpages}")
async for result in send_event(ChatEvent.STATUS, f"**Read web pages**: {webpages}"):
yield result
except ValueError as e:
logger.warning(
f"Error directly reading webpages: {e}. Attempting to respond without online results", exc_info=True
f"Error directly reading webpages: {e}. Attempting to respond without online results",
exc_info=True,
)
## Send Gathered References
async for result in send_event(
ChatEvent.REFERENCES,
{
"inferredQueries": inferred_queries,
"context": compiled_references,
"onlineContext": online_results,
},
):
yield result
# Generate Output
## Generate Image Output
if ConversationCommand.Image in conversation_commands:
update_telemetry_state(
request=websocket,
telemetry_type="api",
api="chat",
metadata={"conversation_command": conversation_commands[0].value},
)
image, status_code, improved_image_prompt, intent_type = await text_to_image(
async for result in text_to_image(
q,
user,
meta_log,
location_data=location,
references=compiled_references,
online_results=online_results,
send_status_func=send_status_update,
)
send_status_func=partial(send_event, ChatEvent.STATUS),
):
if isinstance(result, dict) and ChatEvent.STATUS in result:
yield result[ChatEvent.STATUS]
else:
image, status_code, improved_image_prompt, intent_type = result
if image is None or status_code != 200:
content_obj = {
"image": image,
"content-type": "application/json",
"intentType": intent_type,
"detail": improved_image_prompt,
"content-type": "application/json",
"image": image,
}
await send_complete_llm_response(json.dumps(content_obj))
continue
async for result in send_llm_response(json.dumps(content_obj)):
yield result
return
await sync_to_async(save_to_conversation_log)(
q,
@ -844,17 +880,23 @@ async def websocket_endpoint(
user_message_time,
intent_type=intent_type,
inferred_queries=[improved_image_prompt],
client_application=websocket.user.client_app,
client_application=request.user.client_app,
conversation_id=conversation_id,
compiled_references=compiled_references,
online_results=online_results,
)
content_obj = {"image": image, "intentType": intent_type, "inferredQueries": [improved_image_prompt], "context": compiled_references, "content-type": "application/json", "online_results": online_results} # type: ignore
content_obj = {
"intentType": intent_type,
"inferredQueries": [improved_image_prompt],
"image": image,
}
async for result in send_llm_response(json.dumps(content_obj)):
yield result
return
await send_complete_llm_response(json.dumps(content_obj))
continue
await send_status_update(f"**Generating a well-informed response**")
## Generate Text Output
async for result in send_event(ChatEvent.STATUS, f"**Generating a well-informed response**"):
yield result
llm_response, chat_metadata = await agenerate_chat_response(
defiltered_query,
meta_log,
@ -864,310 +906,49 @@ async def websocket_endpoint(
inferred_queries,
conversation_commands,
user,
websocket.user.client_app,
request.user.client_app,
conversation_id,
location,
user_name,
)
chat_metadata["agent"] = conversation.agent.slug if conversation.agent else None
# Send Response
async for result in send_event(ChatEvent.START_LLM_RESPONSE, ""):
yield result
update_telemetry_state(
request=websocket,
telemetry_type="api",
api="chat",
metadata=chat_metadata,
)
continue_stream = True
iterator = AsyncIteratorWrapper(llm_response)
await send_message("start_llm_response")
async for item in iterator:
if item is None:
break
if connection_alive:
try:
await send_message(f"{item}")
except ConnectionClosedOK:
connection_alive = False
logger.info(f"User {user} disconnected web socket. Emitting rest of responses to clear thread")
await send_message("end_llm_response")
@api_chat.get("", response_class=Response)
@requires(["authenticated"])
async def chat(
request: Request,
common: CommonQueryParams,
q: str,
n: Optional[int] = 5,
d: Optional[float] = 0.22,
stream: Optional[bool] = False,
title: Optional[str] = None,
conversation_id: Optional[int] = None,
city: Optional[str] = None,
region: Optional[str] = None,
country: Optional[str] = None,
timezone: Optional[str] = None,
rate_limiter_per_minute=Depends(
ApiUserRateLimiter(requests=5, subscribed_requests=60, window=60, slug="chat_minute")
),
rate_limiter_per_day=Depends(
ApiUserRateLimiter(requests=5, subscribed_requests=600, window=60 * 60 * 24, slug="chat_day")
),
) -> Response:
user: KhojUser = request.user.object
q = unquote(q)
if is_query_empty(q):
return Response(
content="It seems like your query is incomplete. Could you please provide more details or specify what you need help with?",
media_type="text/plain",
status_code=400,
)
user_message_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
logger.info(f"Chat request by {user.username}: {q}")
await is_ready_to_chat(user)
conversation_commands = [get_conversation_command(query=q, any_references=True)]
_custom_filters = []
if conversation_commands == [ConversationCommand.Help]:
help_str = "/" + ConversationCommand.Help
if q.strip() == help_str:
conversation_config = await ConversationAdapters.aget_user_conversation_config(user)
if conversation_config == None:
conversation_config = await ConversationAdapters.aget_default_conversation_config()
model_type = conversation_config.model_type
formatted_help = help_message.format(model=model_type, version=state.khoj_version, device=get_device())
return StreamingResponse(iter([formatted_help]), media_type="text/event-stream", status_code=200)
# Adding specification to search online specifically on khoj.dev pages.
_custom_filters.append("site:khoj.dev")
conversation_commands.append(ConversationCommand.Online)
conversation = await ConversationAdapters.aget_conversation_by_user(
user, request.user.client_app, conversation_id, title
)
conversation_id = conversation.id if conversation else None
if not conversation:
return Response(
content=f"No conversation found with requested id, title", media_type="text/plain", status_code=400
)
else:
meta_log = conversation.conversation_log
if ConversationCommand.Summarize in conversation_commands:
file_filters = conversation.file_filters
llm_response = ""
if len(file_filters) == 0:
llm_response = "No files selected for summarization. Please add files using the section on the left."
elif len(file_filters) > 1:
llm_response = "Only one file can be selected for summarization."
else:
async for result in send_event(ChatEvent.END_LLM_RESPONSE, ""):
yield result
logger.debug("Finished streaming response")
return
if not connection_alive or not continue_stream:
continue
try:
file_object = await FileObjectAdapters.async_get_file_objects_by_name(user, file_filters[0])
if len(file_object) == 0:
llm_response = "Sorry, we couldn't find the full text of this file. Please re-upload the document and try again."
return StreamingResponse(content=llm_response, media_type="text/event-stream", status_code=200)
contextual_data = " ".join([file.raw_text for file in file_object])
summarizeStr = "/" + ConversationCommand.Summarize
if q.strip() == summarizeStr:
q = "Create a general summary of the file"
response = await extract_relevant_summary(q, contextual_data)
llm_response = str(response)
async for result in send_event(ChatEvent.MESSAGE, f"{item}"):
yield result
except Exception as e:
logger.error(f"Error summarizing file for {user.email}: {e}")
llm_response = "Error summarizing file."
await sync_to_async(save_to_conversation_log)(
q,
llm_response,
user,
conversation.conversation_log,
user_message_time,
intent_type="summarize",
client_application=request.user.client_app,
conversation_id=conversation_id,
)
update_telemetry_state(
request=request,
telemetry_type="api",
api="chat",
metadata={"conversation_command": conversation_commands[0].value},
**common.__dict__,
)
return StreamingResponse(content=llm_response, media_type="text/event-stream", status_code=200)
is_automated_task = conversation_commands == [ConversationCommand.AutomatedTask]
if conversation_commands == [ConversationCommand.Default] or is_automated_task:
conversation_commands = await aget_relevant_information_sources(q, meta_log, is_automated_task)
mode = await aget_relevant_output_modes(q, meta_log, is_automated_task)
if mode not in conversation_commands:
conversation_commands.append(mode)
for cmd in conversation_commands:
await conversation_command_rate_limiter.update_and_check_if_valid(request, cmd)
q = q.replace(f"/{cmd.value}", "").strip()
location = None
if city or region or country:
location = LocationData(city=city, region=region, country=country)
user_name = await aget_user_name(user)
if ConversationCommand.Automation in conversation_commands:
try:
automation, crontime, query_to_run, subject = await create_automation(
q, timezone, user, request.url, meta_log
)
except Exception as e:
logger.error(f"Error creating automation {q} for {user.email}: {e}", exc_info=True)
return Response(
content=f"Unable to create automation. Ensure the automation doesn't already exist.",
media_type="text/plain",
status_code=500,
)
llm_response = construct_automation_created_message(automation, crontime, query_to_run, subject)
await sync_to_async(save_to_conversation_log)(
q,
llm_response,
user,
meta_log,
user_message_time,
intent_type="automation",
client_application=request.user.client_app,
conversation_id=conversation_id,
inferred_queries=[query_to_run],
automation_id=automation.id,
)
if stream:
return StreamingResponse(llm_response, media_type="text/event-stream", status_code=200)
else:
return Response(content=llm_response, media_type="text/plain", status_code=200)
compiled_references, inferred_queries, defiltered_query = await extract_references_and_questions(
request, meta_log, q, (n or 5), (d or math.inf), conversation_id, conversation_commands, location
)
online_results: Dict[str, Dict] = {}
if conversation_commands == [ConversationCommand.Notes] and not await EntryAdapters.auser_has_entries(user):
no_entries_found_format = no_entries_found.format()
if stream:
return StreamingResponse(iter([no_entries_found_format]), media_type="text/event-stream", status_code=200)
else:
response_obj = {"response": no_entries_found_format}
return Response(content=json.dumps(response_obj), media_type="text/plain", status_code=200)
if conversation_commands == [ConversationCommand.Notes] and is_none_or_empty(compiled_references):
no_notes_found_format = no_notes_found.format()
if stream:
return StreamingResponse(iter([no_notes_found_format]), media_type="text/event-stream", status_code=200)
else:
response_obj = {"response": no_notes_found_format}
return Response(content=json.dumps(response_obj), media_type="text/plain", status_code=200)
if ConversationCommand.Notes in conversation_commands and is_none_or_empty(compiled_references):
conversation_commands.remove(ConversationCommand.Notes)
if ConversationCommand.Online in conversation_commands:
try:
online_results = await search_online(defiltered_query, meta_log, location, custom_filters=_custom_filters)
except ValueError as e:
logger.warning(f"Error searching online: {e}. Attempting to respond without online results")
if ConversationCommand.Webpage in conversation_commands:
try:
online_results = await read_webpages(defiltered_query, meta_log, location)
except ValueError as e:
logger.warning(
f"Error directly reading webpages: {e}. Attempting to respond without online results", exc_info=True
)
if ConversationCommand.Image in conversation_commands:
update_telemetry_state(
request=request,
telemetry_type="api",
api="chat",
metadata={"conversation_command": conversation_commands[0].value},
**common.__dict__,
)
image, status_code, improved_image_prompt, intent_type = await text_to_image(
q, user, meta_log, location_data=location, references=compiled_references, online_results=online_results
)
if image is None:
content_obj = {"image": image, "intentType": intent_type, "detail": improved_image_prompt}
return Response(content=json.dumps(content_obj), media_type="application/json", status_code=status_code)
await sync_to_async(save_to_conversation_log)(
q,
image,
user,
meta_log,
user_message_time,
intent_type=intent_type,
inferred_queries=[improved_image_prompt],
client_application=request.user.client_app,
conversation_id=conversation.id,
compiled_references=compiled_references,
online_results=online_results,
)
content_obj = {"image": image, "intentType": intent_type, "inferredQueries": [improved_image_prompt], "context": compiled_references, "online_results": online_results} # type: ignore
return Response(content=json.dumps(content_obj), media_type="application/json", status_code=status_code)
# Get the (streamed) chat response from the LLM of choice.
llm_response, chat_metadata = await agenerate_chat_response(
defiltered_query,
meta_log,
conversation,
compiled_references,
online_results,
inferred_queries,
conversation_commands,
user,
request.user.client_app,
conversation.id,
location,
user_name,
)
cmd_set = set([cmd.value for cmd in conversation_commands])
chat_metadata["conversation_command"] = cmd_set
chat_metadata["agent"] = conversation.agent.slug if conversation.agent else None
update_telemetry_state(
request=request,
telemetry_type="api",
api="chat",
metadata=chat_metadata,
**common.__dict__,
)
if llm_response is None:
return Response(content=llm_response, media_type="text/plain", status_code=500)
continue_stream = False
logger.info(f"User {user} disconnected. Emitting rest of responses to clear thread: {e}")
## Stream Text Response
if stream:
return StreamingResponse(llm_response, media_type="text/event-stream", status_code=200)
return StreamingResponse(event_generator(q), media_type="text/plain")
## Non-Streaming Text Response
else:
# Get the full response from the generator if the stream is not requested.
response_obj = {}
actual_response = ""
iterator = event_generator(q)
async for item in iterator:
try:
item_json = json.loads(item)
if "type" in item_json and item_json["type"] == ChatEvent.REFERENCES.value:
response_obj = item_json["data"]
except:
actual_response += item
response_obj["response"] = actual_response
iterator = AsyncIteratorWrapper(llm_response)
# Get the full response from the generator if the stream is not requested.
aggregated_gpt_response = ""
async for item in iterator:
if item is None:
break
aggregated_gpt_response += item
actual_response = aggregated_gpt_response.split("### compiled references:")[0]
response_obj = {
"response": actual_response,
"inferredQueries": inferred_queries,
"context": compiled_references,
"online_results": online_results,
}
return Response(content=json.dumps(response_obj), media_type="application/json", status_code=200)
return Response(content=json.dumps(response_obj), media_type="application/json", status_code=200)

View file

@ -41,7 +41,7 @@ if not state.anonymous_mode:
from google.auth.transport import requests as google_requests
from google.oauth2 import id_token
except ImportError:
missing_requirements += ["Install the Khoj production package with `pip install khoj-assistant[prod]`"]
missing_requirements += ["Install the Khoj production package with `pip install khoj[prod]`"]
if not os.environ.get("RESEND_API_KEY") and (
not os.environ.get("GOOGLE_CLIENT_ID") or not os.environ.get("GOOGLE_CLIENT_SECRET")
):

View file

@ -9,6 +9,7 @@ import os
import re
from concurrent.futures import ThreadPoolExecutor
from datetime import datetime, timedelta, timezone
from enum import Enum
from functools import partial
from random import random
from typing import (
@ -330,6 +331,7 @@ async def aget_relevant_output_modes(query: str, conversation_history: dict, is_
# Check whether the tool exists as a valid ConversationCommand
return ConversationCommand(response)
logger.error(f"Invalid output mode selected: {response}. Defaulting to text.")
return ConversationCommand.Text
except Exception:
logger.error(f"Invalid response for determining relevant mode: {response}")
@ -542,9 +544,6 @@ async def send_message_to_model_wrapper(
chat_model_option or await ConversationAdapters.aget_default_conversation_config()
)
if conversation_config is None:
raise HTTPException(status_code=500, detail="Contact the server administrator to set a default chat model.")
chat_model = conversation_config.chat_model
max_tokens = conversation_config.max_prompt_size
tokenizer = conversation_config.tokenizer
@ -778,7 +777,7 @@ async def text_to_image(
references: List[Dict[str, Any]],
online_results: Dict[str, Any],
send_status_func: Optional[Callable] = None,
) -> Tuple[Optional[str], int, Optional[str], str]:
):
status_code = 200
image = None
response = None
@ -790,7 +789,8 @@ async def text_to_image(
# If the user has not configured a text to image model, return an unsupported on server error
status_code = 501
message = "Failed to generate image. Setup image generation on the server."
return image_url or image, status_code, message, intent_type.value
yield image_url or image, status_code, message, intent_type.value
return
text2image_model = text_to_image_config.model_name
chat_history = ""
@ -802,20 +802,21 @@ async def text_to_image(
chat_history += f"Q: Prompt: {chat['intent']['query']}\n"
chat_history += f"A: Improved Prompt: {chat['intent']['inferred-queries'][0]}\n"
with timer("Improve the original user query", logger):
if send_status_func:
await send_status_func("**Enhancing the Painting Prompt**")
improved_image_prompt = await generate_better_image_prompt(
message,
chat_history,
location_data=location_data,
note_references=references,
online_results=online_results,
model_type=text_to_image_config.model_type,
)
if send_status_func:
async for event in send_status_func("**Enhancing the Painting Prompt**"):
yield {ChatEvent.STATUS: event}
improved_image_prompt = await generate_better_image_prompt(
message,
chat_history,
location_data=location_data,
note_references=references,
online_results=online_results,
model_type=text_to_image_config.model_type,
)
if send_status_func:
await send_status_func(f"**🖼️ Painting using Enhanced Prompt**:\n{improved_image_prompt}")
async for event in send_status_func(f"**🖼️ Painting using Enhanced Prompt**:\n{improved_image_prompt}"):
yield {ChatEvent.STATUS: event}
if text_to_image_config.model_type == TextToImageModelConfig.ModelType.OPENAI:
with timer("Generate image with OpenAI", logger):
@ -840,12 +841,14 @@ async def text_to_image(
logger.error(f"Image Generation blocked by OpenAI: {e}")
status_code = e.status_code # type: ignore
message = f"Image generation blocked by OpenAI: {e.message}" # type: ignore
return image_url or image, status_code, message, intent_type.value
yield image_url or image, status_code, message, intent_type.value
return
else:
logger.error(f"Image Generation failed with {e}", exc_info=True)
message = f"Image generation failed with OpenAI error: {e.message}" # type: ignore
status_code = e.status_code # type: ignore
return image_url or image, status_code, message, intent_type.value
yield image_url or image, status_code, message, intent_type.value
return
elif text_to_image_config.model_type == TextToImageModelConfig.ModelType.STABILITYAI:
with timer("Generate image with Stability AI", logger):
@ -867,7 +870,8 @@ async def text_to_image(
logger.error(f"Image Generation failed with {e}", exc_info=True)
message = f"Image generation failed with Stability AI error: {e}"
status_code = e.status_code # type: ignore
return image_url or image, status_code, message, intent_type.value
yield image_url or image, status_code, message, intent_type.value
return
with timer("Convert image to webp", logger):
# Convert png to webp for faster loading
@ -887,7 +891,7 @@ async def text_to_image(
intent_type = ImageIntentType.TEXT_TO_IMAGE_V3
image = base64.b64encode(webp_image_bytes).decode("utf-8")
return image_url or image, status_code, improved_image_prompt, intent_type.value
yield image_url or image, status_code, improved_image_prompt, intent_type.value
class ApiUserRateLimiter:
@ -1211,6 +1215,14 @@ Manage your automations [here](/automations).
""".strip()
class ChatEvent(Enum):
START_LLM_RESPONSE = "start_llm_response"
END_LLM_RESPONSE = "end_llm_response"
MESSAGE = "message"
REFERENCES = "references"
STATUS = "status"
def get_user_config(user: KhojUser, request: Request, is_detailed: bool = False):
user_picture = request.session.get("user", {}).get("picture")
is_active = has_required_scope(request, ["premium"])

349
src/khoj/routers/indexer.py Normal file
View file

@ -0,0 +1,349 @@
import asyncio
import logging
from typing import Dict, Optional, Union
from fastapi import APIRouter, Depends, Header, Request, Response, UploadFile
from pydantic import BaseModel
from starlette.authentication import requires
from khoj.database.models import GithubConfig, KhojUser, NotionConfig
from khoj.processor.content.docx.docx_to_entries import DocxToEntries
from khoj.processor.content.github.github_to_entries import GithubToEntries
from khoj.processor.content.images.image_to_entries import ImageToEntries
from khoj.processor.content.markdown.markdown_to_entries import MarkdownToEntries
from khoj.processor.content.notion.notion_to_entries import NotionToEntries
from khoj.processor.content.org_mode.org_to_entries import OrgToEntries
from khoj.processor.content.pdf.pdf_to_entries import PdfToEntries
from khoj.processor.content.plaintext.plaintext_to_entries import PlaintextToEntries
from khoj.routers.helpers import ApiIndexedDataLimiter, update_telemetry_state
from khoj.search_type import text_search
from khoj.utils import constants, state
from khoj.utils.config import SearchModels
from khoj.utils.helpers import LRU, get_file_type
from khoj.utils.rawconfig import ContentConfig, FullConfig, SearchConfig
from khoj.utils.yaml import save_config_to_file_updated_state
logger = logging.getLogger(__name__)
indexer = APIRouter()
class File(BaseModel):
path: str
content: Union[str, bytes]
class IndexBatchRequest(BaseModel):
files: list[File]
class IndexerInput(BaseModel):
org: Optional[dict[str, str]] = None
markdown: Optional[dict[str, str]] = None
pdf: Optional[dict[str, bytes]] = None
plaintext: Optional[dict[str, str]] = None
image: Optional[dict[str, bytes]] = None
docx: Optional[dict[str, bytes]] = None
@indexer.post("/update")
@requires(["authenticated"])
async def update(
request: Request,
files: list[UploadFile],
force: bool = False,
t: Optional[Union[state.SearchType, str]] = state.SearchType.All,
client: Optional[str] = None,
user_agent: Optional[str] = Header(None),
referer: Optional[str] = Header(None),
host: Optional[str] = Header(None),
indexed_data_limiter: ApiIndexedDataLimiter = Depends(
ApiIndexedDataLimiter(
incoming_entries_size_limit=10,
subscribed_incoming_entries_size_limit=75,
total_entries_size_limit=10,
subscribed_total_entries_size_limit=100,
)
),
):
user = request.user.object
index_files: Dict[str, Dict[str, str]] = {
"org": {},
"markdown": {},
"pdf": {},
"plaintext": {},
"image": {},
"docx": {},
}
try:
logger.info(f"📬 Updating content index via API call by {client} client")
for file in files:
file_content = file.file.read()
file_type, encoding = get_file_type(file.content_type, file_content)
if file_type in index_files:
index_files[file_type][file.filename] = file_content.decode(encoding) if encoding else file_content
else:
logger.warning(f"Skipped indexing unsupported file type sent by {client} client: {file.filename}")
indexer_input = IndexerInput(
org=index_files["org"],
markdown=index_files["markdown"],
pdf=index_files["pdf"],
plaintext=index_files["plaintext"],
image=index_files["image"],
docx=index_files["docx"],
)
if state.config == None:
logger.info("📬 Initializing content index on first run.")
default_full_config = FullConfig(
content_type=None,
search_type=SearchConfig.model_validate(constants.default_config["search-type"]),
processor=None,
)
state.config = default_full_config
default_content_config = ContentConfig(
org=None,
markdown=None,
pdf=None,
docx=None,
image=None,
github=None,
notion=None,
plaintext=None,
)
state.config.content_type = default_content_config
save_config_to_file_updated_state()
configure_search(state.search_models, state.config.search_type)
# Extract required fields from config
loop = asyncio.get_event_loop()
success = await loop.run_in_executor(
None,
configure_content,
indexer_input.model_dump(),
force,
t,
False,
user,
)
if not success:
raise RuntimeError("Failed to update content index")
logger.info(f"Finished processing batch indexing request")
except Exception as e:
logger.error(f"Failed to process batch indexing request: {e}", exc_info=True)
logger.error(
f'🚨 Failed to {"force " if force else ""}update {t} content index triggered via API call by {client} client: {e}',
exc_info=True,
)
return Response(content="Failed", status_code=500)
indexing_metadata = {
"num_org": len(index_files["org"]),
"num_markdown": len(index_files["markdown"]),
"num_pdf": len(index_files["pdf"]),
"num_plaintext": len(index_files["plaintext"]),
"num_image": len(index_files["image"]),
"num_docx": len(index_files["docx"]),
}
update_telemetry_state(
request=request,
telemetry_type="api",
api="index/update",
client=client,
user_agent=user_agent,
referer=referer,
host=host,
metadata=indexing_metadata,
)
logger.info(f"📪 Content index updated via API call by {client} client")
indexed_filenames = ",".join(file for ctype in index_files for file in index_files[ctype]) or ""
return Response(content=indexed_filenames, status_code=200)
def configure_search(search_models: SearchModels, search_config: Optional[SearchConfig]) -> Optional[SearchModels]:
# Run Validation Checks
if search_models is None:
search_models = SearchModels()
return search_models
def configure_content(
files: Optional[dict[str, dict[str, str]]],
regenerate: bool = False,
t: Optional[state.SearchType] = state.SearchType.All,
full_corpus: bool = True,
user: KhojUser = None,
) -> bool:
success = True
if t == None:
t = state.SearchType.All
if t is not None and t in [type.value for type in state.SearchType]:
t = state.SearchType(t)
if t is not None and not t.value in [type.value for type in state.SearchType]:
logger.warning(f"🚨 Invalid search type: {t}")
return False
search_type = t.value if t else None
no_documents = all([not files.get(file_type) for file_type in files])
if files is None:
logger.warning(f"🚨 No files to process for {search_type} search.")
return True
try:
# Initialize Org Notes Search
if (search_type == state.SearchType.All.value or search_type == state.SearchType.Org.value) and files["org"]:
logger.info("🦄 Setting up search for orgmode notes")
# Extract Entries, Generate Notes Embeddings
text_search.setup(
OrgToEntries,
files.get("org"),
regenerate=regenerate,
full_corpus=full_corpus,
user=user,
)
except Exception as e:
logger.error(f"🚨 Failed to setup org: {e}", exc_info=True)
success = False
try:
# Initialize Markdown Search
if (search_type == state.SearchType.All.value or search_type == state.SearchType.Markdown.value) and files[
"markdown"
]:
logger.info("💎 Setting up search for markdown notes")
# Extract Entries, Generate Markdown Embeddings
text_search.setup(
MarkdownToEntries,
files.get("markdown"),
regenerate=regenerate,
full_corpus=full_corpus,
user=user,
)
except Exception as e:
logger.error(f"🚨 Failed to setup markdown: {e}", exc_info=True)
success = False
try:
# Initialize PDF Search
if (search_type == state.SearchType.All.value or search_type == state.SearchType.Pdf.value) and files["pdf"]:
logger.info("🖨️ Setting up search for pdf")
# Extract Entries, Generate PDF Embeddings
text_search.setup(
PdfToEntries,
files.get("pdf"),
regenerate=regenerate,
full_corpus=full_corpus,
user=user,
)
except Exception as e:
logger.error(f"🚨 Failed to setup PDF: {e}", exc_info=True)
success = False
try:
# Initialize Plaintext Search
if (search_type == state.SearchType.All.value or search_type == state.SearchType.Plaintext.value) and files[
"plaintext"
]:
logger.info("📄 Setting up search for plaintext")
# Extract Entries, Generate Plaintext Embeddings
text_search.setup(
PlaintextToEntries,
files.get("plaintext"),
regenerate=regenerate,
full_corpus=full_corpus,
user=user,
)
except Exception as e:
logger.error(f"🚨 Failed to setup plaintext: {e}", exc_info=True)
success = False
try:
if no_documents:
github_config = GithubConfig.objects.filter(user=user).prefetch_related("githubrepoconfig").first()
if (
search_type == state.SearchType.All.value or search_type == state.SearchType.Github.value
) and github_config is not None:
logger.info("🐙 Setting up search for github")
# Extract Entries, Generate Github Embeddings
text_search.setup(
GithubToEntries,
None,
regenerate=regenerate,
full_corpus=full_corpus,
user=user,
config=github_config,
)
except Exception as e:
logger.error(f"🚨 Failed to setup GitHub: {e}", exc_info=True)
success = False
try:
if no_documents:
# Initialize Notion Search
notion_config = NotionConfig.objects.filter(user=user).first()
if (
search_type == state.SearchType.All.value or search_type == state.SearchType.Notion.value
) and notion_config:
logger.info("🔌 Setting up search for notion")
text_search.setup(
NotionToEntries,
None,
regenerate=regenerate,
full_corpus=full_corpus,
user=user,
config=notion_config,
)
except Exception as e:
logger.error(f"🚨 Failed to setup Notion: {e}", exc_info=True)
success = False
try:
# Initialize Image Search
if (search_type == state.SearchType.All.value or search_type == state.SearchType.Image.value) and files[
"image"
]:
logger.info("🖼️ Setting up search for images")
# Extract Entries, Generate Image Embeddings
text_search.setup(
ImageToEntries,
files.get("image"),
regenerate=regenerate,
full_corpus=full_corpus,
user=user,
)
except Exception as e:
logger.error(f"🚨 Failed to setup images: {e}", exc_info=True)
success = False
try:
if (search_type == state.SearchType.All.value or search_type == state.SearchType.Docx.value) and files["docx"]:
logger.info("📄 Setting up search for docx")
text_search.setup(
DocxToEntries,
files.get("docx"),
regenerate=regenerate,
full_corpus=full_corpus,
user=user,
)
except Exception as e:
logger.error(f"🚨 Failed to setup docx: {e}", exc_info=True)
success = False
# Invalidate Query Cache
if user:
state.query_cache[user.uuid] = LRU()
return success

View file

@ -59,7 +59,7 @@ def cli(args=None):
# Set default values for arguments
args.chat_on_gpu = not args.disable_chat_on_gpu
args.version_no = version("khoj-assistant")
args.version_no = version("khoj")
if args.version:
# Show version of khoj installed and exit
print(args.version_no)

View file

@ -22,7 +22,7 @@ magika = Magika()
def collect_files(search_type: Optional[SearchType] = SearchType.All, user=None) -> dict:
files = {}
files: dict[str, dict] = {"docx": {}, "image": {}}
if search_type == SearchType.All or search_type == SearchType.Org:
org_config = LocalOrgConfig.objects.filter(user=user).first()

View file

@ -259,7 +259,7 @@ def log_telemetry(
# Populate telemetry data to log
request_body = {
"telemetry_type": telemetry_type,
"server_version": version("khoj-assistant"),
"server_version": version("khoj"),
"os": platform.system(),
"timestamp": datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
}

View file

@ -61,7 +61,7 @@ def test_search_with_invalid_content_type(client):
@pytest.mark.django_db(transaction=True)
def test_search_with_valid_content_type(client):
headers = {"Authorization": "Bearer kk-secret"}
for content_type in ["all", "org", "markdown", "image", "pdf", "github", "notion", "plaintext", "docx"]:
for content_type in ["all", "org", "markdown", "image", "pdf", "github", "notion", "plaintext", "image", "docx"]:
# Act
response = client.get(f"/api/search?q=random&t={content_type}", headers=headers)
# Assert
@ -127,6 +127,8 @@ def test_index_update_big_files(client):
# Arrange
state.billing_enabled = True
files = get_big_size_sample_files_data()
# Credential for the default_user, who is subscribed
headers = {"Authorization": "Bearer kk-secret"}
# Act
@ -455,13 +457,13 @@ def test_user_no_data_returns_empty(client, sample_org_data, api_user3: KhojApiU
@pytest.mark.skipif(os.getenv("OPENAI_API_KEY") is None, reason="requires OPENAI_API_KEY")
@pytest.mark.django_db(transaction=True)
def test_chat_with_unauthenticated_user(chat_client_with_auth, api_user2: KhojApiUser):
async def test_chat_with_unauthenticated_user(chat_client_with_auth, api_user2: KhojApiUser):
# Arrange
headers = {"Authorization": f"Bearer {api_user2.token}"}
# Act
auth_response = chat_client_with_auth.get(f'/api/chat?q="Hello!"&stream=true', headers=headers)
no_auth_response = chat_client_with_auth.get(f'/api/chat?q="Hello!"&stream=true')
auth_response = chat_client_with_auth.get(f'/api/chat?q="Hello!"', headers=headers)
no_auth_response = chat_client_with_auth.get(f'/api/chat?q="Hello!"')
# Assert
assert auth_response.status_code == 200
@ -497,7 +499,8 @@ def get_sample_files_data():
def get_big_size_sample_files_data():
big_text = "a" * (25 * 1024 * 1024) # a string of approximately 25 MB
# a string of approximately 100 MB
big_text = "a" * (100 * 1024 * 1024)
return [
(
"files",

View file

@ -286,7 +286,7 @@ def test_answer_from_chat_history_and_currently_retrieved_content(loaded_model):
# Act
response_gen = converse_offline(
references=[
"Testatron was born on 1st April 1984 in Testville."
{"compiled": "Testatron was born on 1st April 1984 in Testville."}
], # Assume context retrieved from notes for the user_query
user_query="Where was I born?",
conversation_log=populate_chat_history(message_list),
@ -341,14 +341,22 @@ def test_answer_requires_current_date_awareness(loaded_model):
"Chat actor should be able to answer questions relative to current date using provided notes"
# Arrange
context = [
f"""{datetime.now().strftime("%Y-%m-%d")} "Naco Taco" "Tacos for Dinner"
Expenses:Food:Dining 10.00 USD""",
f"""{datetime.now().strftime("%Y-%m-%d")} "Sagar Ratna" "Dosa for Lunch"
Expenses:Food:Dining 10.00 USD""",
f"""2020-04-01 "SuperMercado" "Bananas"
Expenses:Food:Groceries 10.00 USD""",
f"""2020-01-01 "Naco Taco" "Burittos for Dinner"
Expenses:Food:Dining 10.00 USD""",
{
"compiled": f"""{datetime.now().strftime("%Y-%m-%d")} "Naco Taco" "Tacos for Dinner"
Expenses:Food:Dining 10.00 USD"""
},
{
"compiled": f"""{datetime.now().strftime("%Y-%m-%d")} "Sagar Ratna" "Dosa for Lunch"
Expenses:Food:Dining 10.00 USD"""
},
{
"compiled": f"""2020-04-01 "SuperMercado" "Bananas"
Expenses:Food:Groceries 10.00 USD"""
},
{
"compiled": f"""2020-01-01 "Naco Taco" "Burittos for Dinner"
Expenses:Food:Dining 10.00 USD"""
},
]
# Act
@ -373,14 +381,22 @@ def test_answer_requires_date_aware_aggregation_across_provided_notes(loaded_mod
"Chat actor should be able to answer questions that require date aware aggregation across multiple notes"
# Arrange
context = [
f"""# {datetime.now().strftime("%Y-%m-%d")} "Naco Taco" "Tacos for Dinner"
Expenses:Food:Dining 10.00 USD""",
f"""{datetime.now().strftime("%Y-%m-%d")} "Sagar Ratna" "Dosa for Lunch"
Expenses:Food:Dining 10.00 USD""",
f"""2020-04-01 "SuperMercado" "Bananas"
Expenses:Food:Groceries 10.00 USD""",
f"""2020-01-01 "Naco Taco" "Burittos for Dinner"
Expenses:Food:Dining 10.00 USD""",
{
"compiled": f"""# {datetime.now().strftime("%Y-%m-%d")} "Naco Taco" "Tacos for Dinner"
Expenses:Food:Dining 10.00 USD"""
},
{
"compiled": f"""{datetime.now().strftime("%Y-%m-%d")} "Sagar Ratna" "Dosa for Lunch"
Expenses:Food:Dining 10.00 USD"""
},
{
"compiled": f"""2020-04-01 "SuperMercado" "Bananas"
Expenses:Food:Groceries 10.00 USD"""
},
{
"compiled": f"""2020-01-01 "Naco Taco" "Burittos for Dinner"
Expenses:Food:Dining 10.00 USD"""
},
]
# Act
@ -430,12 +446,18 @@ def test_ask_for_clarification_if_not_enough_context_in_question(loaded_model):
"Chat actor should ask for clarification if question cannot be answered unambiguously with the provided context"
# Arrange
context = [
f"""# Ramya
My sister, Ramya, is married to Kali Devi. They have 2 kids, Ravi and Rani.""",
f"""# Fang
My sister, Fang Liu is married to Xi Li. They have 1 kid, Xiao Li.""",
f"""# Aiyla
My sister, Aiyla is married to Tolga. They have 3 kids, Yildiz, Ali and Ahmet.""",
{
"compiled": f"""# Ramya
My sister, Ramya, is married to Kali Devi. They have 2 kids, Ravi and Rani."""
},
{
"compiled": f"""# Fang
My sister, Fang Liu is married to Xi Li. They have 1 kid, Xiao Li."""
},
{
"compiled": f"""# Aiyla
My sister, Aiyla is married to Tolga. They have 3 kids, Yildiz, Ali and Ahmet."""
},
]
# Act
@ -459,9 +481,9 @@ def test_agent_prompt_should_be_used(loaded_model, offline_agent):
"Chat actor should ask be tuned to think like an accountant based on the agent definition"
# Arrange
context = [
f"""I went to the store and bought some bananas for 2.20""",
f"""I went to the store and bought some apples for 1.30""",
f"""I went to the store and bought some oranges for 6.00""",
{"compiled": f"""I went to the store and bought some bananas for 2.20"""},
{"compiled": f"""I went to the store and bought some apples for 1.30"""},
{"compiled": f"""I went to the store and bought some oranges for 6.00"""},
]
# Act
@ -499,7 +521,7 @@ def test_chat_does_not_exceed_prompt_size(loaded_model):
"Ensure chat context and response together do not exceed max prompt size for the model"
# Arrange
prompt_size_exceeded_error = "ERROR: The prompt size exceeds the context window size and cannot be processed"
context = [" ".join([f"{number}" for number in range(2043)])]
context = [{"compiled": " ".join([f"{number}" for number in range(2043)])}]
# Act
response_gen = converse_offline(
@ -530,7 +552,7 @@ def test_filter_questions():
# ----------------------------------------------------------------------------------------------------
@pytest.mark.anyio
@pytest.mark.django_db(transaction=True)
async def test_use_default_response_mode(client_offline_chat):
async def test_use_text_response_mode(client_offline_chat):
# Arrange
user_query = "What's the latest in the Israel/Palestine conflict?"
@ -538,7 +560,7 @@ async def test_use_default_response_mode(client_offline_chat):
mode = await aget_relevant_output_modes(user_query, {})
# Assert
assert mode.value == "default"
assert mode.value == "text"
# ----------------------------------------------------------------------------------------------------

View file

@ -45,7 +45,6 @@ def create_conversation(message_list, user, agent=None):
# Tests
# ----------------------------------------------------------------------------------------------------
@pytest.mark.xfail(AssertionError, reason="Chat director not capable of answering this question yet")
@pytest.mark.chatquality
@pytest.mark.django_db(transaction=True)
def test_offline_chat_with_no_chat_history_or_retrieved_content(client_offline_chat):
@ -68,10 +67,8 @@ def test_chat_with_online_content(client_offline_chat):
# Act
q = "/online give me the link to paul graham's essay how to do great work"
encoded_q = quote(q, safe="")
response = client_offline_chat.get(f"/api/chat?q={encoded_q}&stream=true")
response_message = response.content.decode("utf-8")
response_message = response_message.split("### compiled references")[0]
response = client_offline_chat.get(f"/api/chat?q={encoded_q}")
response_message = response.json()["response"]
# Assert
expected_responses = [
@ -92,10 +89,8 @@ def test_chat_with_online_webpage_content(client_offline_chat):
# Act
q = "/online how many firefighters were involved in the great chicago fire and which year did it take place?"
encoded_q = quote(q, safe="")
response = client_offline_chat.get(f"/api/chat?q={encoded_q}&stream=true")
response_message = response.content.decode("utf-8")
response_message = response_message.split("### compiled references")[0]
response = client_offline_chat.get(f"/api/chat?q={encoded_q}")
response_message = response.json()["response"]
# Assert
expected_responses = ["185", "1871", "horse"]
@ -179,10 +174,6 @@ def test_answer_from_chat_history_and_previously_retrieved_content(client_offlin
# ----------------------------------------------------------------------------------------------------
@pytest.mark.xfail(
AssertionError,
reason="Chat director not capable of answering this question yet because it requires extract_questions",
)
@pytest.mark.chatquality
@pytest.mark.django_db(transaction=True)
def test_answer_from_chat_history_and_currently_retrieved_content(client_offline_chat, default_user2):

View file

@ -49,8 +49,8 @@ def create_conversation(message_list, user, agent=None):
@pytest.mark.django_db(transaction=True)
def test_chat_with_no_chat_history_or_retrieved_content(chat_client):
# Act
response = chat_client.get(f'/api/chat?q="Hello, my name is Testatron. Who are you?"&stream=true')
response_message = response.content.decode("utf-8")
response = chat_client.get(f'/api/chat?q="Hello, my name is Testatron. Who are you?"')
response_message = response.json()["response"]
# Assert
expected_responses = ["Khoj", "khoj"]
@ -67,10 +67,8 @@ def test_chat_with_online_content(chat_client):
# Act
q = "/online give me the link to paul graham's essay how to do great work"
encoded_q = quote(q, safe="")
response = chat_client.get(f"/api/chat?q={encoded_q}&stream=true")
response_message = response.content.decode("utf-8")
response_message = response_message.split("### compiled references")[0]
response = chat_client.get(f"/api/chat?q={encoded_q}")
response_message = response.json()["response"]
# Assert
expected_responses = [
@ -91,10 +89,8 @@ def test_chat_with_online_webpage_content(chat_client):
# Act
q = "/online how many firefighters were involved in the great chicago fire and which year did it take place?"
encoded_q = quote(q, safe="")
response = chat_client.get(f"/api/chat?q={encoded_q}&stream=true")
response_message = response.content.decode("utf-8")
response_message = response_message.split("### compiled references")[0]
response = chat_client.get(f"/api/chat?q={encoded_q}")
response_message = response.json()["response"]
# Assert
expected_responses = ["185", "1871", "horse"]
@ -144,7 +140,7 @@ def test_answer_from_currently_retrieved_content(chat_client, default_user2: Kho
# Act
response = chat_client.get(f'/api/chat?q="Where was Xi Li born?"')
response_message = response.content.decode("utf-8")
response_message = response.json()["response"]
# Assert
assert response.status_code == 200
@ -168,7 +164,7 @@ def test_answer_from_chat_history_and_previously_retrieved_content(chat_client_n
# Act
response = chat_client_no_background.get(f'/api/chat?q="Where was I born?"')
response_message = response.content.decode("utf-8")
response_message = response.json()["response"]
# Assert
assert response.status_code == 200
@ -191,7 +187,7 @@ def test_answer_from_chat_history_and_currently_retrieved_content(chat_client, d
# Act
response = chat_client.get(f'/api/chat?q="Where was I born?"')
response_message = response.content.decode("utf-8")
response_message = response.json()["response"]
# Assert
assert response.status_code == 200
@ -215,8 +211,8 @@ def test_no_answer_in_chat_history_or_retrieved_content(chat_client, default_use
create_conversation(message_list, default_user2)
# Act
response = chat_client.get(f'/api/chat?q="Where was I born?"&stream=true')
response_message = response.content.decode("utf-8")
response = chat_client.get(f'/api/chat?q="Where was I born?"')
response_message = response.json()["response"]
# Assert
expected_responses = [
@ -226,6 +222,7 @@ def test_no_answer_in_chat_history_or_retrieved_content(chat_client, default_use
"do not have",
"don't have",
"where were you born?",
"where you were born?",
]
assert response.status_code == 200
@ -280,8 +277,8 @@ def test_answer_not_known_using_notes_command(chat_client_no_background, default
create_conversation(message_list, default_user2)
# Act
response = chat_client_no_background.get(f"/api/chat?q={query}&stream=true")
response_message = response.content.decode("utf-8")
response = chat_client_no_background.get(f"/api/chat?q={query}")
response_message = response.json()["response"]
# Assert
assert response.status_code == 200
@ -527,8 +524,8 @@ def test_answer_general_question_not_in_chat_history_or_retrieved_content(chat_c
create_conversation(message_list, default_user2)
# Act
response = chat_client.get(f'/api/chat?q="Write a haiku about unit testing. Do not say anything else."&stream=true')
response_message = response.content.decode("utf-8").split("### compiled references")[0]
response = chat_client.get(f'/api/chat?q="Write a haiku about unit testing. Do not say anything else.')
response_message = response.json()["response"]
# Assert
expected_responses = ["test", "Test"]
@ -544,9 +541,8 @@ def test_answer_general_question_not_in_chat_history_or_retrieved_content(chat_c
@pytest.mark.chatquality
def test_ask_for_clarification_if_not_enough_context_in_question(chat_client_no_background):
# Act
response = chat_client_no_background.get(f'/api/chat?q="What is the name of Namitas older son?"&stream=true')
response_message = response.content.decode("utf-8").split("### compiled references")[0].lower()
response = chat_client_no_background.get(f'/api/chat?q="What is the name of Namitas older son?"')
response_message = response.json()["response"].lower()
# Assert
expected_responses = [
@ -658,8 +654,8 @@ def test_answer_in_chat_history_by_conversation_id_with_agent(
def test_answer_requires_multiple_independent_searches(chat_client):
"Chat director should be able to answer by doing multiple independent searches for required information"
# Act
response = chat_client.get(f'/api/chat?q="Is Xi older than Namita? Just the older persons full name"&stream=true')
response_message = response.content.decode("utf-8").split("### compiled references")[0].lower()
response = chat_client.get(f'/api/chat?q="Is Xi older than Namita? Just the older persons full name"')
response_message = response.json()["response"].lower()
# Assert
expected_responses = ["he is older than namita", "xi is older than namita", "xi li is older than namita"]
@ -683,8 +679,8 @@ def test_answer_using_file_filter(chat_client):
'Is Xi older than Namita? Just say the older persons full name. file:"Namita.markdown" file:"Xi Li.markdown"'
)
response = chat_client.get(f"/api/chat?q={query}&stream=true")
response_message = response.content.decode("utf-8").split("### compiled references")[0].lower()
response = chat_client.get(f"/api/chat?q={query}")
response_message = response.json()["response"].lower()
# Assert
expected_responses = ["he is older than namita", "xi is older than namita", "xi li is older than namita"]

View file

@ -53,5 +53,6 @@
"1.13.0": "0.15.0",
"1.14.0": "0.15.0",
"1.15.0": "0.15.0",
"1.16.0": "0.15.0"
"1.16.0": "0.15.0",
"1.17.0": "0.15.0"
}