Migrate to Llama.cpp for Offline Chat (#680)

## Benefits
- Support all GGUF format chat models
- Support more GPUs like AMD, Nvidia, Mac, Vulcan (previously just Vulcan, Mac)
- Support more capabilities like larger context window, schema enforcement, speculative decoding etc.

## Changes
### Major
- Use llama.cpp for offline chat models
  - Support larger context window
  - Automatically apply appropriate chat template. So offline chat models not using llama2 format are now supported
  - Use better default offline chat model, NousResearch/Hermes-2-Pro-Mistral-7B
- Enable extract queries actor to improve notes search with offline chat
- Update documentation to use llama.cpp for offline chat in Khoj

### Minor
- Migrate to use NouseResearch's Hermes-2-Pro 7B as default offline chat model in khoj.yml
- Rename GPT4AllChatProcessor to OfflineChatProcessor Config, Model
- Only add location to image prompt generator when location known
This commit is contained in:
Debanjum 2024-04-02 15:49:42 +05:30 committed by GitHub
commit 3c3e48b18c
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
23 changed files with 365 additions and 320 deletions

View file

@ -14,16 +14,16 @@ You can configure Khoj to chat with you about anything. When relevant, it'll use
### Setup (Self-Hosting)
#### Offline Chat
Offline chat stays completely private and works without internet using open-source models.
Offline chat stays completely private and can work without internet using open-source models.
> **System Requirements**:
> - Minimum 8 GB RAM. Recommend **16Gb VRAM**
> - Minimum **5 GB of Disk** available
> - A CPU supporting [AVX or AVX2 instructions](https://en.wikipedia.org/wiki/Advanced_Vector_Extensions) is required
> - A Mac M1+ or [Vulcan supported GPU](https://vulkan.gpuinfo.org/) should significantly speed up chat response times
> - An Nvidia, AMD GPU or a Mac M1+ machine would significantly speed up chat response times
1. Open your [Khoj offline settings](http://localhost:42110/server/admin/database/offlinechatprocessorconversationconfig/) and click *Enable* on the Offline Chat configuration.
2. Open your [Chat model options](http://localhost:42110/server/admin/database/chatmodeloptions/) and add a new option for the offline chat model you want to use. Make sure to use `Offline` as its type. We currently only support offline models that use the [Llama chat prompt](https://replicate.com/blog/how-to-prompt-llama#wrap-user-input-with-inst-inst-tags) format. We recommend using `mistral-7b-instruct-v0.1.Q4_0.gguf`.
2. Open your [Chat model options settings](http://localhost:42110/server/admin/database/chatmodeloptions/) and add any [GGUF chat model](https://huggingface.co/models?library=gguf) to use for offline chat. Make sure to use `Offline` as its type. For a balanced chat model that runs well on standard consumer hardware we recommend using [Hermes-2-Pro-Mistral-7B by NousResearch](https://huggingface.co/NousResearch/Hermes-2-Pro-Mistral-7B-GGUF) by default.
:::tip[Note]

View file

@ -101,6 +101,7 @@ sudo -u postgres createdb khoj --password
##### Local Server Setup
- *Make sure [python](https://realpython.com/installing-python/) and [pip](https://pip.pypa.io/en/stable/installation/) are installed on your machine*
- Check [llama-cpp-python setup](https://python.langchain.com/docs/integrations/llms/llamacpp#installation) if you hit any llama-cpp issues with the installation
Run the following command in your terminal to install the Khoj backend.
@ -108,17 +109,36 @@ Run the following command in your terminal to install the Khoj backend.
<Tabs groupId="operating-systems">
<TabItem value="macos" label="MacOS">
```shell
# ARM/M1+ Machines
MAKE_ARGS="-DLLAMA_METAL=on" python -m pip install khoj-assistant
# Intel Machines
python -m pip install khoj-assistant
```
</TabItem>
<TabItem value="win" label="Windows">
```shell
py -m pip install khoj-assistant
# 1. (Optional) To use NVIDIA (CUDA) GPU
$env:CMAKE_ARGS = "-DLLAMA_OPENBLAS=on"
# 1. (Optional) To use AMD (ROCm) GPU
CMAKE_ARGS="-DLLAMA_HIPBLAS=on"
# 1. (Optional) To use VULCAN GPU
CMAKE_ARGS="-DLLAMA_VULKAN=on"
# 2. Install Khoj
py -m pip install khoj-assistant
```
</TabItem>
<TabItem value="unix" label="Linux">
```shell
python -m pip install khoj-assistant
# CPU
python -m pip install khoj-assistant
# NVIDIA (CUDA) GPU
CMAKE_ARGS="DLLAMA_CUBLAS=on" FORCE_CMAKE=1 python -m pip install khoj-assistant
# AMD (ROCm) GPU
CMAKE_ARGS="-DLLAMA_HIPBLAS=on" FORCE_CMAKE=1 python -m pip install khoj-assistant
# VULCAN GPU
CMAKE_ARGS="-DLLAMA_VULKAN=on" FORCE_CMAKE=1 python -m pip install khoj-assistant
```
</TabItem>
</Tabs>
@ -179,13 +199,13 @@ If you're using a custom domain, you must use an SSL certificate. You can use [L
1. Go to http://localhost:42110/server/admin and login with your admin credentials.
1. Go to [OpenAI settings](http://localhost:42110/server/admin/database/openaiprocessorconversationconfig/) in the server admin settings to add an OpenAI processor conversation config. This is where you set your API key. Alternatively, you can go to the [offline chat settings](http://localhost:42110/server/admin/database/offlinechatprocessorconversationconfig/) and simply create a new setting with `Enabled` set to `True`.
2. Go to the ChatModelOptions if you want to add additional models for chat.
- Set the `chat-model` field to a supported chat model[^1] of your choice. For example, you can specify `gpt-4-turbo-preview` if you're using OpenAI or `mistral-7b-instruct-v0.1.Q4_0.gguf` if you're using offline chat.
- Set the `chat-model` field to a supported chat model[^1] of your choice. For example, you can specify `gpt-4-turbo-preview` if you're using OpenAI or `NousResearch/Hermes-2-Pro-Mistral-7B-GGUF` if you're using offline chat.
- Make sure to set the `model-type` field to `OpenAI` or `Offline` respectively.
- The `tokenizer` and `max-prompt-size` fields are optional. Set them only when using a non-standard model (i.e not mistral, gpt or llama2 model).
1. Select files and folders to index [using the desktop client](/get-started/setup#2-download-the-desktop-client). When you click 'Save', the files will be sent to your server for indexing.
- Select Notion workspaces and Github repositories to index using the web interface.
[^1]: Khoj, by default, can use [OpenAI GPT3.5+ chat models](https://platform.openai.com/docs/models/overview) or [GPT4All chat models that follow Llama2 Prompt Template](https://github.com/nomic-ai/gpt4all/blob/main/gpt4all-chat/metadata/models2.json). See [this section](/miscellaneous/advanced#use-openai-compatible-llm-api-server-self-hosting) to use non-standard chat models
[^1]: Khoj, by default, can use [OpenAI GPT3.5+ chat models](https://platform.openai.com/docs/models/overview) or [GGUF chat models](https://huggingface.co/models?library=gguf). See [this section](/miscellaneous/advanced#use-openai-compatible-llm-api-server-self-hosting) to use non-standard chat models
:::tip[Note]
Using Safari on Mac? You might not be able to login to the admin panel. Try using Chrome or Firefox instead.

View file

@ -10,4 +10,4 @@ Many Open Source projects are used to power Khoj. Here's a few of them:
- Charles Cave for [OrgNode Parser](http://members.optusnet.com.au/~charles57/GTD/orgnode.html)
- [Org.js](https://mooz.github.io/org-js/) to render Org-mode results on the Web interface
- [Markdown-it](https://github.com/markdown-it/markdown-it) to render Markdown results on the Web interface
- [GPT4All](https://github.com/nomic-ai/gpt4all) to chat with local LLM
- [Llama.cpp](https://github.com/ggerganov/llama.cpp) to chat with local LLM

View file

@ -62,8 +62,7 @@ dependencies = [
"pymupdf >= 1.23.5",
"django == 4.2.10",
"authlib == 1.2.1",
"gpt4all == 2.1.0; platform_system == 'Linux' and platform_machine == 'x86_64'",
"gpt4all == 2.1.0; platform_system == 'Windows' or platform_system == 'Darwin'",
"llama-cpp-python == 0.2.56",
"itsdangerous == 2.1.2",
"httpx == 0.25.0",
"pgvector == 0.2.4",

View file

@ -43,7 +43,7 @@ from khoj.search_filter.date_filter import DateFilter
from khoj.search_filter.file_filter import FileFilter
from khoj.search_filter.word_filter import WordFilter
from khoj.utils import state
from khoj.utils.config import GPT4AllProcessorModel
from khoj.utils.config import OfflineChatProcessorModel
from khoj.utils.helpers import generate_random_name, is_none_or_empty
@ -705,8 +705,8 @@ class ConversationAdapters:
conversation_config = ConversationAdapters.get_default_conversation_config()
if offline_chat_config and offline_chat_config.enabled and conversation_config.model_type == "offline":
if state.gpt4all_processor_config is None or state.gpt4all_processor_config.loaded_model is None:
state.gpt4all_processor_config = GPT4AllProcessorModel(conversation_config.chat_model)
if state.offline_chat_processor_config is None or state.offline_chat_processor_config.loaded_model is None:
state.offline_chat_processor_config = OfflineChatProcessorModel(conversation_config.chat_model)
return conversation_config

View file

@ -80,7 +80,7 @@ class ChatModelOptions(BaseModel):
max_prompt_size = models.IntegerField(default=None, null=True, blank=True)
tokenizer = models.CharField(max_length=200, default=None, null=True, blank=True)
chat_model = models.CharField(max_length=200, default="mistral-7b-instruct-v0.1.Q4_0.gguf")
chat_model = models.CharField(max_length=200, default="NousResearch/Hermes-2-Pro-Mistral-7B-GGUF")
model_type = models.CharField(max_length=200, choices=ModelType.choices, default=ModelType.OFFLINE)

View file

@ -0,0 +1,71 @@
"""
Current format of khoj.yml
---
app:
...
content-type:
...
processor:
conversation:
offline-chat:
enable-offline-chat: false
chat-model: mistral-7b-instruct-v0.1.Q4_0.gguf
...
search-type:
...
New format of khoj.yml
---
app:
...
content-type:
...
processor:
conversation:
offline-chat:
enable-offline-chat: false
chat-model: NousResearch/Hermes-2-Pro-Mistral-7B-GGUF
...
search-type:
...
"""
import logging
from packaging import version
from khoj.utils.yaml import load_config_from_file, save_config_to_file
logger = logging.getLogger(__name__)
def migrate_offline_chat_default_model(args):
schema_version = "1.7.0"
raw_config = load_config_from_file(args.config_file)
previous_version = raw_config.get("version")
if "processor" not in raw_config:
return args
if raw_config["processor"] is None:
return args
if "conversation" not in raw_config["processor"]:
return args
if "offline-chat" not in raw_config["processor"]["conversation"]:
return args
if "chat-model" not in raw_config["processor"]["conversation"]["offline-chat"]:
return args
if previous_version is None or version.parse(previous_version) < version.parse(schema_version):
logger.info(
f"Upgrading config schema to {schema_version} from {previous_version} to change default (offline) chat model to mistral GGUF"
)
raw_config["version"] = schema_version
# Update offline chat model to use Nous Research's Hermes-2-Pro GGUF in path format suitable for llama-cpp
offline_chat_model = raw_config["processor"]["conversation"]["offline-chat"]["chat-model"]
if offline_chat_model == "mistral-7b-instruct-v0.1.Q4_0.gguf":
raw_config["processor"]["conversation"]["offline-chat"][
"chat-model"
] = "NousResearch/Hermes-2-Pro-Mistral-7B-GGUF"
save_config_to_file(raw_config, args.config_file)
return args

View file

@ -1,13 +1,15 @@
import json
import logging
from collections import deque
from datetime import datetime
from datetime import datetime, timedelta
from threading import Thread
from typing import Any, Iterator, List, Union
from langchain.schema import ChatMessage
from llama_cpp import Llama
from khoj.database.models import Agent
from khoj.processor.conversation import prompts
from khoj.processor.conversation.offline.utils import download_model
from khoj.processor.conversation.utils import (
ThreadedGenerator,
generate_chatml_messages_with_context,
@ -22,7 +24,7 @@ logger = logging.getLogger(__name__)
def extract_questions_offline(
text: str,
model: str = "mistral-7b-instruct-v0.1.Q4_0.gguf",
model: str = "NousResearch/Hermes-2-Pro-Mistral-7B-GGUF",
loaded_model: Union[Any, None] = None,
conversation_log={},
use_history: bool = True,
@ -32,22 +34,14 @@ def extract_questions_offline(
"""
Infer search queries to retrieve relevant notes to answer user query
"""
try:
from gpt4all import GPT4All
except ModuleNotFoundError as e:
logger.info("There was an error importing GPT4All. Please run pip install gpt4all in order to install it.")
raise e
# Assert that loaded_model is either None or of type GPT4All
assert loaded_model is None or isinstance(loaded_model, GPT4All), "loaded_model must be of type GPT4All or None"
all_questions = text.split("? ")
all_questions = [q + "?" for q in all_questions[:-1]] + [all_questions[-1]]
if not should_extract_questions:
return all_questions
gpt4all_model = loaded_model or GPT4All(model)
assert loaded_model is None or isinstance(loaded_model, Llama), "loaded_model must be of type Llama, if configured"
offline_chat_model = loaded_model or download_model(model)
location = f"{location_data.city}, {location_data.region}, {location_data.country}" if location_data else "Unknown"
@ -56,37 +50,36 @@ def extract_questions_offline(
if use_history:
for chat in conversation_log.get("chat", [])[-4:]:
if chat["by"] == "khoj" and chat["intent"].get("type") != "text-to-image":
if chat["by"] == "khoj" and "text-to-image" not in chat["intent"].get("type"):
chat_history += f"Q: {chat['intent']['query']}\n"
chat_history += f"A: {chat['message']}\n"
chat_history += f"Khoj: {chat['message']}\n\n"
current_date = datetime.now().strftime("%Y-%m-%d")
last_year = datetime.now().year - 1
last_christmas_date = f"{last_year}-12-25"
next_christmas_date = f"{datetime.now().year}-12-25"
system_prompt = prompts.system_prompt_extract_questions_gpt4all.format(
message=(prompts.system_prompt_message_extract_questions_gpt4all)
)
example_questions = prompts.extract_questions_gpt4all_sample.format(
today = datetime.today()
yesterday = (today - timedelta(days=1)).strftime("%Y-%m-%d")
last_year = today.year - 1
example_questions = prompts.extract_questions_offline.format(
query=text,
chat_history=chat_history,
current_date=current_date,
current_date=today.strftime("%Y-%m-%d"),
yesterday_date=yesterday,
last_year=last_year,
last_christmas_date=last_christmas_date,
next_christmas_date=next_christmas_date,
this_year=today.year,
location=location,
)
message = system_prompt + example_questions
messages = generate_chatml_messages_with_context(
example_questions, model_name=model, loaded_model=offline_chat_model
)
state.chat_lock.acquire()
try:
response = gpt4all_model.generate(message, max_tokens=200, top_k=2, temp=0, n_batch=512)
response = send_message_to_model_offline(messages, loaded_model=offline_chat_model)
finally:
state.chat_lock.release()
# Extract, Clean Message from GPT's Response
try:
# This will expect to be a list with a single string with a list of questions
questions = (
questions_str = (
str(response)
.strip(empty_escape_sequences)
.replace("['", '["')
@ -94,11 +87,8 @@ def extract_questions_offline(
.replace("</s>", "")
.replace("']", '"]')
.replace("', '", '", "')
.replace('["', "")
.replace('"]', "")
.split("? ")
)
questions = [q + "?" for q in questions[:-1]] + [questions[-1]]
questions: List[str] = json.loads(questions_str)
questions = filter_questions(questions)
except:
logger.warning(f"Llama returned invalid JSON. Falling back to using user message as search query.\n{response}")
@ -121,12 +111,12 @@ def filter_questions(questions: List[str]):
"do not know",
"do not understand",
]
filtered_questions = []
filtered_questions = set()
for q in questions:
if not any([word in q.lower() for word in hint_words]) and not is_none_or_empty(q):
filtered_questions.append(q)
filtered_questions.add(q)
return filtered_questions
return list(filtered_questions)
def converse_offline(
@ -134,7 +124,7 @@ def converse_offline(
references=[],
online_results=[],
conversation_log={},
model: str = "mistral-7b-instruct-v0.1.Q4_0.gguf",
model: str = "NousResearch/Hermes-2-Pro-Mistral-7B-GGUF",
loaded_model: Union[Any, None] = None,
completion_func=None,
conversation_commands=[ConversationCommand.Default],
@ -147,25 +137,19 @@ def converse_offline(
"""
Converse with user using Llama
"""
try:
from gpt4all import GPT4All
except ModuleNotFoundError as e:
logger.info("There was an error importing GPT4All. Please run pip install gpt4all in order to install it.")
raise e
assert loaded_model is None or isinstance(loaded_model, GPT4All), "loaded_model must be of type GPT4All or None"
gpt4all_model = loaded_model or GPT4All(model)
# Initialize Variables
assert loaded_model is None or isinstance(loaded_model, Llama), "loaded_model must be of type Llama, if configured"
offline_chat_model = loaded_model or download_model(model)
compiled_references_message = "\n\n".join({f"{item}" for item in references})
current_date = datetime.now().strftime("%Y-%m-%d")
if agent and agent.personality:
system_prompt = prompts.custom_system_prompt_message_gpt4all.format(
system_prompt = prompts.custom_system_prompt_offline_chat.format(
name=agent.name, bio=agent.personality, current_date=current_date
)
else:
system_prompt = prompts.system_prompt_message_gpt4all.format(current_date=current_date)
system_prompt = prompts.system_prompt_offline_chat.format(current_date=current_date)
conversation_primer = prompts.query_prompt.format(query=user_query)
@ -193,7 +177,7 @@ def converse_offline(
conversation_primer = f"{prompts.online_search_conversation.format(online_results=str(simplified_online_results))}\n{conversation_primer}"
if not is_none_or_empty(compiled_references_message):
conversation_primer = f"{prompts.notes_conversation_gpt4all.format(references=compiled_references_message)}\n{conversation_primer}"
conversation_primer = f"{prompts.notes_conversation_offline.format(references=compiled_references_message)}\n{conversation_primer}"
# Setup Prompt with Primer or Conversation History
messages = generate_chatml_messages_with_context(
@ -201,72 +185,44 @@ def converse_offline(
system_prompt,
conversation_log,
model_name=model,
loaded_model=offline_chat_model,
max_prompt_size=max_prompt_size,
tokenizer_name=tokenizer_name,
)
g = ThreadedGenerator(references, online_results, completion_func=completion_func)
t = Thread(target=llm_thread, args=(g, messages, gpt4all_model))
t = Thread(target=llm_thread, args=(g, messages, offline_chat_model))
t.start()
return g
def llm_thread(g, messages: List[ChatMessage], model: Any):
user_message = messages[-1]
system_message = messages[0]
conversation_history = messages[1:-1]
formatted_messages = [
prompts.khoj_message_gpt4all.format(message=message.content)
if message.role == "assistant"
else prompts.user_message_gpt4all.format(message=message.content)
for message in conversation_history
]
stop_phrases = ["<s>", "INST]", "Notes:"]
chat_history = "".join(formatted_messages)
templated_system_message = prompts.system_prompt_gpt4all.format(message=system_message.content)
templated_user_message = prompts.user_message_gpt4all.format(message=user_message.content)
prompted_message = templated_system_message + chat_history + templated_user_message
response_queue: deque[str] = deque(maxlen=3) # Create a response queue with a maximum length of 3
hit_stop_phrase = False
state.chat_lock.acquire()
response_iterator = send_message_to_model_offline(prompted_message, loaded_model=model, streaming=True)
try:
response_iterator = send_message_to_model_offline(
messages, loaded_model=model, stop=stop_phrases, streaming=True
)
for response in response_iterator:
response_queue.append(response)
hit_stop_phrase = any(stop_phrase in "".join(response_queue) for stop_phrase in stop_phrases)
if hit_stop_phrase:
logger.debug(f"Stop response as hit stop phrase: {''.join(response_queue)}")
break
# Start streaming the response at a lag once the queue is full
# This allows stop word testing before sending the response
if len(response_queue) == response_queue.maxlen:
g.send(response_queue[0])
g.send(response["choices"][0]["delta"].get("content", ""))
finally:
if not hit_stop_phrase:
if len(response_queue) == response_queue.maxlen:
# remove already sent reponse chunk
response_queue.popleft()
# send the remaining response
g.send("".join(response_queue))
state.chat_lock.release()
g.close()
def send_message_to_model_offline(
message, loaded_model=None, model="mistral-7b-instruct-v0.1.Q4_0.gguf", streaming=False, system_message=""
) -> str:
try:
from gpt4all import GPT4All
except ModuleNotFoundError as e:
logger.info("There was an error importing GPT4All. Please run pip install gpt4all in order to install it.")
raise e
assert loaded_model is None or isinstance(loaded_model, GPT4All), "loaded_model must be of type GPT4All or None"
gpt4all_model = loaded_model or GPT4All(model)
return gpt4all_model.generate(
system_message + message, max_tokens=200, top_k=2, temp=0, n_batch=512, streaming=streaming
)
messages: List[ChatMessage],
loaded_model=None,
model="NousResearch/Hermes-2-Pro-Mistral-7B-GGUF",
streaming=False,
stop=[],
):
assert loaded_model is None or isinstance(loaded_model, Llama), "loaded_model must be of type Llama, if configured"
offline_chat_model = loaded_model or download_model(model)
messages_dict = [{"role": message.role, "content": message.content} for message in messages]
response = offline_chat_model.create_chat_completion(messages_dict, stop=stop, stream=streaming)
if streaming:
return response
else:
return response["choices"][0]["message"].get("content", "")

View file

@ -1,43 +1,54 @@
import glob
import logging
import os
from huggingface_hub.constants import HF_HUB_CACHE
from khoj.utils import state
logger = logging.getLogger(__name__)
def download_model(model_name: str):
try:
import gpt4all
except ModuleNotFoundError as e:
logger.info("There was an error importing GPT4All. Please run pip install gpt4all in order to install it.")
raise e
def download_model(repo_id: str, filename: str = "*Q4_K_M.gguf"):
from llama_cpp.llama import Llama
# Initialize Model Parameters. Use n_ctx=0 to get context size from the model
kwargs = {"n_threads": 4, "n_ctx": 0, "verbose": False}
# Decide whether to load model to GPU or CPU
chat_model_config = None
device = "gpu" if state.chat_on_gpu and state.device != "cpu" else "cpu"
kwargs["n_gpu_layers"] = -1 if device == "gpu" else 0
# Check if the model is already downloaded
model_path = load_model_from_cache(repo_id, filename)
chat_model = None
try:
# Download the chat model and its config
chat_model_config = gpt4all.GPT4All.retrieve_model(model_name=model_name, allow_download=True)
# Try load chat model to GPU if:
# 1. Loading chat model to GPU isn't disabled via CLI and
# 2. Machine has GPU
# 3. GPU has enough free memory to load the chat model with max context length of 4096
device = (
"gpu"
if state.chat_on_gpu and gpt4all.pyllmodel.LLModel().list_gpu(chat_model_config["path"], 4096)
else "cpu"
)
except ValueError:
device = "cpu"
except Exception as e:
if chat_model_config is None:
device = "cpu" # Fallback to CPU as can't determine if GPU has enough memory
logger.debug(f"Unable to download model config from gpt4all website: {e}")
if model_path:
chat_model = Llama(model_path, **kwargs)
else:
raise e
Llama.from_pretrained(repo_id=repo_id, filename=filename, **kwargs)
except:
# Load model on CPU if GPU is not available
kwargs["n_gpu_layers"], device = 0, "cpu"
if model_path:
chat_model = Llama(model_path, **kwargs)
else:
chat_model = Llama.from_pretrained(repo_id=repo_id, filename=filename, **kwargs)
# Now load the downloaded chat model onto appropriate device
chat_model = gpt4all.GPT4All(model_name=model_name, n_ctx=4096, device=device, allow_download=False)
logger.debug(f"Loaded chat model to {device.upper()}.")
logger.debug(f"{'Loaded' if model_path else 'Downloaded'} chat model to {device.upper()}")
return chat_model
def load_model_from_cache(repo_id: str, filename: str, repo_type="models"):
# Construct the path to the model file in the cache directory
repo_org, repo_name = repo_id.split("/")
object_id = "--".join([repo_type, repo_org, repo_name])
model_path = os.path.sep.join([HF_HUB_CACHE, object_id, "snapshots", "**", filename])
# Check if the model file exists
paths = glob.glob(model_path)
if paths:
return paths[0]
else:
return None

View file

@ -101,8 +101,3 @@ def llm_thread(g, messages, model_name, temperature, openai_api_key=None, model_
chat(messages=messages)
g.close()
def extract_summaries(metadata):
"""Extract summaries from metadata"""
return "".join([f'\n{session["summary"]}' for session in metadata])

View file

@ -65,9 +65,9 @@ no_entries_found = PromptTemplate.from_template(
""".strip()
)
## Conversation Prompts for GPT4All Models
## Conversation Prompts for Offline Chat Models
## --
system_prompt_message_gpt4all = PromptTemplate.from_template(
system_prompt_offline_chat = PromptTemplate.from_template(
"""
You are Khoj, a smart, inquisitive and helpful personal assistant.
- Use your general knowledge and past conversation with the user as context to inform your responses.
@ -79,7 +79,7 @@ Today is {current_date} in UTC.
""".strip()
)
custom_system_prompt_message_gpt4all = PromptTemplate.from_template(
custom_system_prompt_offline_chat = PromptTemplate.from_template(
"""
You are {name}, a personal agent on Khoj.
- Use your general knowledge and past conversation with the user as context to inform your responses.
@ -93,40 +93,6 @@ Instructions:\n{bio}
""".strip()
)
system_prompt_message_extract_questions_gpt4all = f"""You are Khoj, a kind and intelligent personal assistant. When the user asks you a question, you ask follow-up questions to clarify the necessary information you need in order to answer from the user's perspective.
- Write the question as if you can search for the answer on the user's personal notes.
- Try to be as specific as possible. Instead of saying "they" or "it" or "he", use the name of the person or thing you are referring to. For example, instead of saying "Which store did they go to?", say "Which store did Alice and Bob go to?".
- Add as much context from the previous questions and notes as required into your search queries.
- Provide search queries as a list of questions
What follow-up questions, if any, will you need to ask to answer the user's question?
"""
system_prompt_gpt4all = PromptTemplate.from_template(
"""
<s>[INST] <<SYS>>
{message}
<</SYS>>Hi there! [/INST] Hello! How can I help you today? </s>"""
)
system_prompt_extract_questions_gpt4all = PromptTemplate.from_template(
"""
<s>[INST] <<SYS>>
{message}
<</SYS>>[/INST]</s>"""
)
user_message_gpt4all = PromptTemplate.from_template(
"""
<s>[INST] {message} [/INST]
""".strip()
)
khoj_message_gpt4all = PromptTemplate.from_template(
"""
{message}</s>
""".strip()
)
## Notes Conversation
## --
notes_conversation = PromptTemplate.from_template(
@ -139,7 +105,7 @@ Notes:
""".strip()
)
notes_conversation_gpt4all = PromptTemplate.from_template(
notes_conversation_offline = PromptTemplate.from_template(
"""
User's Notes:
{references}
@ -191,58 +157,50 @@ Query: {query}""".strip()
)
## Summarize Notes
## --
summarize_notes = PromptTemplate.from_template(
"""
Summarize the below notes about {user_query}:
{text}
Summarize the notes in second person perspective:"""
)
## Answer
## --
answer = PromptTemplate.from_template(
"""
You are a friendly, helpful personal assistant.
Using the users notes below, answer their following question. If the answer is not contained within the notes, say "I don't know."
Notes:
{text}
Question: {user_query}
Answer (in second person):"""
)
## Extract Questions
## --
extract_questions_gpt4all_sample = PromptTemplate.from_template(
extract_questions_offline = PromptTemplate.from_template(
"""
<s>[INST] <<SYS>>Current Date: {current_date}. User's Location: {location}<</SYS>> [/INST]</s>
<s>[INST] How was my trip to Cambodia? [/INST]
How was my trip to Cambodia?</s>
<s>[INST] Who did I visit the temple with on that trip? [/INST]
Who did I visit the temple with in Cambodia?</s>
<s>[INST] How should I take care of my plants? [/INST]
What kind of plants do I have? What issues do my plants have?</s>
<s>[INST] How many tennis balls fit in the back of a 2002 Honda Civic? [/INST]
What is the size of a tennis ball? What is the trunk size of a 2002 Honda Civic?</s>
<s>[INST] What did I do for Christmas last year? [/INST]
What did I do for Christmas {last_year} dt>='{last_christmas_date}' dt<'{next_christmas_date}'</s>
<s>[INST] How are you feeling today? [/INST]</s>
<s>[INST] Is Alice older than Bob? [/INST]
When was Alice born? What is Bob's age?</s>
<s>[INST] <<SYS>>
Use these notes from the user's previous conversations to provide a response:
You are Khoj, an extremely smart and helpful search assistant with the ability to retrieve information from the user's notes. Construct search queries to retrieve relevant information to answer the user's question.
- You will be provided past questions(Q) and answers(A) for context.
- Try to be as specific as possible. Instead of saying "they" or "it" or "he", use proper nouns like name of the person or thing you are referring to.
- Add as much context from the previous questions and answers as required into your search queries.
- Break messages into multiple search queries when required to retrieve the relevant information.
- Add date filters to your search queries from questions and answers when required to retrieve the relevant information.
Current Date: {current_date}
User's Location: {location}
Examples:
Q: How was my trip to Cambodia?
Khoj: ["How was my trip to Cambodia?"]
Q: Who did I visit the temple with on that trip?
Khoj: ["Who did I visit the temple with in Cambodia?"]
Q: Which of them is older?
Khoj: ["When was Alice born?", "What is Bob's age?"]
Q: Where did John say he was? He mentioned it in our call last week.
Khoj: ["Where is John? dt>='{last_year}-12-25' dt<'{last_year}-12-26'", "John's location in call notes"]
Q: How can you help me?
Khoj: ["Social relationships", "Physical and mental health", "Education and career", "Personal life goals and habits"]
Q: What did I do for Christmas last year?
Khoj: ["What did I do for Christmas {last_year} dt>='{last_year}-12-25' dt<'{last_year}-12-26'"]
Q: How should I take care of my plants?
Khoj: ["What kind of plants do I have?", "What issues do my plants have?"]
Q: Who all did I meet here yesterday?
Khoj: ["Met in {location} on {yesterday_date} dt>='{yesterday_date}' dt<'{current_date}'"]
Chat History:
{chat_history}
<</SYS>> [/INST]</s>
<s>[INST] {query} [/INST]
"""
What searches will you perform to answer the following question, using the chat history as reference? Respond with relevant search queries as list of strings.
Q: {query}
""".strip()
)
@ -260,7 +218,7 @@ User's Location: {location}
Q: How was my trip to Cambodia?
Khoj: {{"queries": ["How was my trip to Cambodia?"]}}
A: The trip was amazing. I went to the Angkor Wat temple and it was beautiful.
A: The trip was amazing. You went to the Angkor Wat temple and it was beautiful.
Q: Who did i visit that temple with?
Khoj: {{"queries": ["Who did I visit the Angkor Wat Temple in Cambodia with?"]}}
@ -286,8 +244,8 @@ Q: What is their age difference?
Khoj: {{"queries": ["What is Bob's age?", "What is Tom's age?"]}}
A: Bob is {bob_tom_age_difference} years older than Tom. As Bob is {bob_age} years old and Tom is 30 years old.
Q: What does yesterday's note say?
Khoj: {{"queries": ["Note from {yesterday_date} dt>='{yesterday_date}' dt<'{current_date}'"]}}
Q: Who all did I meet here yesterday?
Khoj: {{"queries": ["Met in {location} on {yesterday_date} dt>='{yesterday_date}' dt<'{current_date}'"]}}
A: Yesterday's note mentions your visit to your local beach with Ram and Shyam.
{chat_history}
@ -543,7 +501,6 @@ help_message = PromptTemplate.from_template(
- **/image**: Generate an image based on your message.
- **/help**: Show this help message.
You are using the **{model}** model on the **{device}**.
**version**: {version}
""".strip()

View file

@ -3,29 +3,28 @@ import logging
import queue
from datetime import datetime
from time import perf_counter
from typing import Any, Dict, List
from typing import Any, Dict, List, Optional
import tiktoken
from langchain.schema import ChatMessage
from llama_cpp.llama import Llama
from transformers import AutoTokenizer
from khoj.database.adapters import ConversationAdapters
from khoj.database.models import ClientApplication, KhojUser
from khoj.processor.conversation.offline.utils import download_model
from khoj.utils.helpers import is_none_or_empty, merge_dicts
logger = logging.getLogger(__name__)
model_to_prompt_size = {
"gpt-3.5-turbo": 3000,
"gpt-3.5-turbo-0125": 3000,
"gpt-4-0125-preview": 7000,
"gpt-4-turbo-preview": 7000,
"llama-2-7b-chat.ggmlv3.q4_0.bin": 1548,
"mistral-7b-instruct-v0.1.Q4_0.gguf": 1548,
}
model_to_tokenizer = {
"llama-2-7b-chat.ggmlv3.q4_0.bin": "hf-internal-testing/llama-tokenizer",
"mistral-7b-instruct-v0.1.Q4_0.gguf": "mistralai/Mistral-7B-Instruct-v0.1",
"gpt-3.5-turbo": 12000,
"gpt-3.5-turbo-0125": 12000,
"gpt-4-0125-preview": 20000,
"gpt-4-turbo-preview": 20000,
"TheBloke/Mistral-7B-Instruct-v0.2-GGUF": 3500,
"NousResearch/Hermes-2-Pro-Mistral-7B-GGUF": 3500,
}
model_to_tokenizer: Dict[str, str] = {}
class ThreadedGenerator:
@ -134,9 +133,10 @@ Khoj: "{inferred_queries if ("text-to-image" in intent_type) else chat_response}
def generate_chatml_messages_with_context(
user_message,
system_message,
system_message=None,
conversation_log={},
model_name="gpt-3.5-turbo",
loaded_model: Optional[Llama] = None,
max_prompt_size=None,
tokenizer_name=None,
):
@ -159,7 +159,7 @@ def generate_chatml_messages_with_context(
chat_notes = f'\n\n Notes:\n{chat.get("context")}' if chat.get("context") else "\n"
chat_logs += [chat["message"] + chat_notes]
rest_backnforths = []
rest_backnforths: List[ChatMessage] = []
# Extract in reverse chronological order
for user_msg, assistant_msg in zip(chat_logs[-2::-2], chat_logs[::-2]):
if len(rest_backnforths) >= 2 * lookback_turns:
@ -176,22 +176,31 @@ def generate_chatml_messages_with_context(
messages.append(ChatMessage(content=system_message, role="system"))
# Truncate oldest messages from conversation history until under max supported prompt size by model
messages = truncate_messages(messages, max_prompt_size, model_name, tokenizer_name)
messages = truncate_messages(messages, max_prompt_size, model_name, loaded_model, tokenizer_name)
# Return message in chronological order
return messages[::-1]
def truncate_messages(
messages: list[ChatMessage], max_prompt_size, model_name: str, tokenizer_name=None
messages: list[ChatMessage],
max_prompt_size,
model_name: str,
loaded_model: Optional[Llama] = None,
tokenizer_name=None,
) -> list[ChatMessage]:
"""Truncate messages to fit within max prompt size supported by model"""
try:
if model_name.startswith("gpt-"):
if loaded_model:
encoder = loaded_model.tokenizer()
elif model_name.startswith("gpt-"):
encoder = tiktoken.encoding_for_model(model_name)
else:
encoder = AutoTokenizer.from_pretrained(tokenizer_name or model_to_tokenizer[model_name])
try:
encoder = download_model(model_name).tokenizer()
except:
encoder = AutoTokenizer.from_pretrained(tokenizer_name or model_to_tokenizer[model_name])
except:
default_tokenizer = "hf-internal-testing/llama-tokenizer"
encoder = AutoTokenizer.from_pretrained(default_tokenizer)
@ -223,12 +232,17 @@ def truncate_messages(
original_question = "\n".join(messages[0].content.split("\n")[-1:]) if type(messages[0].content) == str else ""
original_question = f"\n{original_question}"
original_question_tokens = len(encoder.encode(original_question))
remaining_tokens = max_prompt_size - original_question_tokens - system_message_tokens
truncated_message = encoder.decode(encoder.encode(current_message)[:remaining_tokens]).strip()
remaining_tokens = max_prompt_size - system_message_tokens
if remaining_tokens > original_question_tokens:
remaining_tokens -= original_question_tokens
truncated_message = encoder.decode(encoder.encode(current_message)[:remaining_tokens]).strip()
messages = [ChatMessage(content=truncated_message + original_question, role=messages[0].role)]
else:
truncated_message = encoder.decode(encoder.encode(original_question)[:remaining_tokens]).strip()
messages = [ChatMessage(content=truncated_message, role=messages[0].role)]
logger.debug(
f"Truncate current message to fit within max prompt size of {max_prompt_size} supported by {model_name} model:\n {truncated_message}"
)
messages = [ChatMessage(content=truncated_message + original_question, role=messages[0].role)]
return messages + [system_message] if system_message else messages

View file

@ -35,7 +35,7 @@ from khoj.search_filter.file_filter import FileFilter
from khoj.search_filter.word_filter import WordFilter
from khoj.search_type import image_search, text_search
from khoj.utils import constants, state
from khoj.utils.config import GPT4AllProcessorModel
from khoj.utils.config import OfflineChatProcessorModel
from khoj.utils.helpers import ConversationCommand, timer
from khoj.utils.rawconfig import LocationData, SearchResponse
from khoj.utils.state import SearchType
@ -318,16 +318,16 @@ async def extract_references_and_questions(
using_offline_chat = True
default_offline_llm = await ConversationAdapters.get_default_offline_llm()
chat_model = default_offline_llm.chat_model
if state.gpt4all_processor_config is None:
state.gpt4all_processor_config = GPT4AllProcessorModel(chat_model=chat_model)
if state.offline_chat_processor_config is None:
state.offline_chat_processor_config = OfflineChatProcessorModel(chat_model=chat_model)
loaded_model = state.gpt4all_processor_config.loaded_model
loaded_model = state.offline_chat_processor_config.loaded_model
inferred_queries = extract_questions_offline(
defiltered_query,
loaded_model=loaded_model,
conversation_log=meta_log,
should_extract_questions=False,
should_extract_questions=True,
location_data=location_data,
)
elif conversation_config and conversation_config.model_type == ChatModelOptions.ModelType.OPENAI:

View file

@ -33,7 +33,7 @@ from khoj.processor.conversation.utils import (
)
from khoj.routers.storage import upload_image
from khoj.utils import state
from khoj.utils.config import GPT4AllProcessorModel
from khoj.utils.config import OfflineChatProcessorModel
from khoj.utils.helpers import (
ConversationCommand,
is_none_or_empty,
@ -69,9 +69,9 @@ async def is_ready_to_chat(user: KhojUser):
if has_offline_config and user_conversation_config and user_conversation_config.model_type == "offline":
chat_model = user_conversation_config.chat_model
if state.gpt4all_processor_config is None:
if state.offline_chat_processor_config is None:
logger.info("Loading Offline Chat Model...")
state.gpt4all_processor_config = GPT4AllProcessorModel(chat_model=chat_model)
state.offline_chat_processor_config = OfflineChatProcessorModel(chat_model=chat_model)
return True
ready = has_openai_config or has_offline_config
@ -327,10 +327,13 @@ async def generate_better_image_prompt(
Generate a better image prompt from the given query
"""
location = f"{location_data.city}, {location_data.region}, {location_data.country}" if location_data else "Unknown"
today_date = datetime.now(tz=timezone.utc).strftime("%Y-%m-%d")
location_prompt = prompts.user_location.format(location=location)
if location_data:
location = f"{location_data.city}, {location_data.region}, {location_data.country}"
location_prompt = prompts.user_location.format(location=location)
else:
location_prompt = "Unknown"
user_references = "\n\n".join([f"# {item}" for item in note_references])
@ -368,27 +371,31 @@ async def send_message_to_model_wrapper(
if conversation_config is None:
raise HTTPException(status_code=500, detail="Contact the server administrator to set a default chat model.")
truncated_messages = generate_chatml_messages_with_context(
user_message=message, system_message=system_message, model_name=conversation_config.chat_model
)
chat_model = conversation_config.chat_model
if conversation_config.model_type == "offline":
if state.gpt4all_processor_config is None or state.gpt4all_processor_config.loaded_model is None:
state.gpt4all_processor_config = GPT4AllProcessorModel(conversation_config.chat_model)
if state.offline_chat_processor_config is None or state.offline_chat_processor_config.loaded_model is None:
state.offline_chat_processor_config = OfflineChatProcessorModel(chat_model)
loaded_model = state.offline_chat_processor_config.loaded_model
truncated_messages = generate_chatml_messages_with_context(
user_message=message, system_message=system_message, model_name=chat_model, loaded_model=loaded_model
)
loaded_model = state.gpt4all_processor_config.loaded_model
return send_message_to_model_offline(
message=truncated_messages[-1].content,
messages=truncated_messages,
loaded_model=loaded_model,
model=conversation_config.chat_model,
model=chat_model,
streaming=False,
system_message=truncated_messages[0].content,
)
elif conversation_config.model_type == "openai":
openai_chat_config = await ConversationAdapters.aget_openai_conversation_config()
api_key = openai_chat_config.api_key
chat_model = conversation_config.chat_model
truncated_messages = generate_chatml_messages_with_context(
user_message=message, system_message=system_message, model_name=chat_model
)
openai_response = send_message_to_model(
messages=truncated_messages, api_key=api_key, model=chat_model, response_type=response_type
)
@ -434,10 +441,10 @@ def generate_chat_response(
conversation_config = ConversationAdapters.get_valid_conversation_config(user, conversation)
if conversation_config.model_type == "offline":
if state.gpt4all_processor_config is None or state.gpt4all_processor_config.loaded_model is None:
state.gpt4all_processor_config = GPT4AllProcessorModel(conversation_config.chat_model)
if state.offline_chat_processor_config is None or state.offline_chat_processor_config.loaded_model is None:
state.offline_chat_processor_config = OfflineChatProcessorModel(conversation_config.chat_model)
loaded_model = state.gpt4all_processor_config.loaded_model
loaded_model = state.offline_chat_processor_config.loaded_model
chat_response = converse_offline(
references=compiled_references,
online_results=online_results,

View file

@ -70,15 +70,12 @@ class SearchModels:
@dataclass
class GPT4AllProcessorConfig:
class OfflineChatProcessorConfig:
loaded_model: Union[Any, None] = None
class GPT4AllProcessorModel:
def __init__(
self,
chat_model: str = "mistral-7b-instruct-v0.1.Q4_0.gguf",
):
class OfflineChatProcessorModel:
def __init__(self, chat_model: str = "NousResearch/Hermes-2-Pro-Mistral-7B-GGUF"):
self.chat_model = chat_model
self.loaded_model = None
try:

View file

@ -6,7 +6,7 @@ empty_escape_sequences = "\n|\r|\t| "
app_env_filepath = "~/.khoj/env"
telemetry_server = "https://khoj.beta.haletic.com/v1/telemetry"
content_directory = "~/.khoj/content/"
default_offline_chat_model = "mistral-7b-instruct-v0.1.Q4_0.gguf"
default_offline_chat_model = "NousResearch/Hermes-2-Pro-Mistral-7B-GGUF"
default_online_chat_model = "gpt-4-turbo-preview"
empty_config = {

View file

@ -32,17 +32,13 @@ def initialization():
)
try:
# Note: gpt4all package is not available on all devices.
# So ensure gpt4all package is installed before continuing this step.
import gpt4all
use_offline_model = input("Use offline chat model? (y/n): ")
if use_offline_model == "y":
logger.info("🗣️ Setting up offline chat model")
OfflineChatProcessorConversationConfig.objects.create(enabled=True)
offline_chat_model = input(
f"Enter the offline chat model you want to use, See GPT4All for supported models (default: {default_offline_chat_model}): "
f"Enter the offline chat model you want to use. See HuggingFace for available GGUF models (default: {default_offline_chat_model}): "
)
if offline_chat_model == "":
ChatModelOptions.objects.create(

View file

@ -91,7 +91,7 @@ class OpenAIProcessorConfig(ConfigBase):
class OfflineChatProcessorConfig(ConfigBase):
enable_offline_chat: Optional[bool] = False
chat_model: Optional[str] = "mistral-7b-instruct-v0.1.Q4_0.gguf"
chat_model: Optional[str] = "NousResearch/Hermes-2-Pro-Mistral-7B-GGUF"
class ConversationProcessorConfig(ConfigBase):

View file

@ -9,7 +9,7 @@ from whisper import Whisper
from khoj.processor.embeddings import CrossEncoderModel, EmbeddingsModel
from khoj.utils import config as utils_config
from khoj.utils.config import ContentIndex, GPT4AllProcessorModel, SearchModels
from khoj.utils.config import ContentIndex, OfflineChatProcessorModel, SearchModels
from khoj.utils.helpers import LRU, get_device
from khoj.utils.rawconfig import FullConfig
@ -20,7 +20,7 @@ embeddings_model: Dict[str, EmbeddingsModel] = None
cross_encoder_model: Dict[str, CrossEncoderModel] = None
content_index = ContentIndex()
openai_client: OpenAI = None
gpt4all_processor_config: GPT4AllProcessorModel = None
offline_chat_processor_config: OfflineChatProcessorModel = None
whisper_model: Whisper = None
config_file: Path = None
verbose: int = 0

View file

@ -40,9 +40,9 @@ class ChatModelOptionsFactory(factory.django.DjangoModelFactory):
class Meta:
model = ChatModelOptions
max_prompt_size = 2000
max_prompt_size = 3500
tokenizer = None
chat_model = "mistral-7b-instruct-v0.1.Q4_0.gguf"
chat_model = "NousResearch/Hermes-2-Pro-Mistral-7B-GGUF"
model_type = "offline"

View file

@ -96,3 +96,23 @@ class TestTruncateMessage:
assert final_tokens <= self.max_prompt_size
assert len(chat_messages) == 1
assert truncated_chat_history[0] != copy_big_chat_message
def test_truncate_single_large_question(self):
# Arrange
big_chat_message_content = " ".join(["hi"] * (self.max_prompt_size + 1))
big_chat_message = ChatMessageFactory.build(content=big_chat_message_content)
big_chat_message.role = "user"
copy_big_chat_message = big_chat_message.copy()
chat_messages = [big_chat_message]
initial_tokens = sum([len(self.encoder.encode(message.content)) for message in chat_messages])
# Act
truncated_chat_history = utils.truncate_messages(chat_messages, self.max_prompt_size, self.model_name)
final_tokens = sum([len(self.encoder.encode(message.content)) for message in truncated_chat_history])
# Assert
# The original object has been modified. Verify certain properties
assert initial_tokens > self.max_prompt_size
assert final_tokens <= self.max_prompt_size
assert len(chat_messages) == 1
assert truncated_chat_history[0] != copy_big_chat_message

View file

@ -5,18 +5,12 @@ import pytest
SKIP_TESTS = True
pytestmark = pytest.mark.skipif(
SKIP_TESTS,
reason="The GPT4All library has some quirks that make it hard to test in CI. This causes some tests to fail. Hence, disable it in CI.",
reason="Disable in CI to avoid long test runs.",
)
import freezegun
from freezegun import freeze_time
try:
from gpt4all import GPT4All
except ModuleNotFoundError as e:
print("There was an error importing GPT4All. Please run pip install gpt4all in order to install it.")
from khoj.processor.conversation.offline.chat_model import (
converse_offline,
extract_questions_offline,
@ -25,14 +19,12 @@ from khoj.processor.conversation.offline.chat_model import (
from khoj.processor.conversation.offline.utils import download_model
from khoj.processor.conversation.utils import message_to_log
from khoj.routers.helpers import aget_relevant_output_modes
MODEL_NAME = "mistral-7b-instruct-v0.1.Q4_0.gguf"
from khoj.utils.constants import default_offline_chat_model
@pytest.fixture(scope="session")
def loaded_model():
download_model(MODEL_NAME)
return GPT4All(MODEL_NAME)
return download_model(default_offline_chat_model)
freezegun.configure(extend_ignore_list=["transformers"])
@ -40,7 +32,6 @@ freezegun.configure(extend_ignore_list=["transformers"])
# Test
# ----------------------------------------------------------------------------------------------------
@pytest.mark.xfail(reason="Search actor isn't very date aware nor capable of formatting")
@pytest.mark.chatquality
@freeze_time("1984-04-02", ignore=["transformers"])
def test_extract_question_with_date_filter_from_relative_day(loaded_model):
@ -149,20 +140,22 @@ def test_generate_search_query_using_question_from_chat_history(loaded_model):
message_list = [
("What is the name of Mr. Anderson's daughter?", "Miss Barbara", []),
]
query = "Does he have any sons?"
# Act
response = extract_questions_offline(
"Does he have any sons?",
query,
conversation_log=populate_chat_history(message_list),
loaded_model=loaded_model,
use_history=True,
)
all_expected_in_response = [
"Anderson",
any_expected_with_barbara = [
"sibling",
"brother",
]
any_expected_in_response = [
any_expected_with_anderson = [
"son",
"sons",
"children",
@ -170,12 +163,21 @@ def test_generate_search_query_using_question_from_chat_history(loaded_model):
# Assert
assert len(response) >= 1
assert all([expected_response in response[0] for expected_response in all_expected_in_response]), (
"Expected chat actor to ask for clarification in response, but got: " + response[0]
)
assert any([expected_response in response[0] for expected_response in any_expected_in_response]), (
"Expected chat actor to ask for clarification in response, but got: " + response[0]
)
assert response[-1] == query, "Expected last question to be the user query, but got: " + response[-1]
# Ensure the remaining generated search queries use proper nouns and chat history context
for question in response[:-1]:
if "Barbara" in question:
assert any([expected_relation in question for expected_relation in any_expected_with_barbara]), (
"Expected search queries using proper nouns and chat history for context, but got: " + question
)
elif "Anderson" in question:
assert any([expected_response in question for expected_response in any_expected_with_anderson]), (
"Expected search queries using proper nouns and chat history for context, but got: " + question
)
else:
assert False, (
"Expected search queries using proper nouns and chat history for context, but got: " + question
)
# ----------------------------------------------------------------------------------------------------
@ -312,6 +314,7 @@ def test_answer_from_chat_history_and_currently_retrieved_content(loaded_model):
# ----------------------------------------------------------------------------------------------------
@pytest.mark.xfail(reason="Chat actor lies when it doesn't know the answer")
@pytest.mark.chatquality
def test_refuse_answering_unanswerable_question(loaded_model):
"Chat actor should not try make up answers to unanswerable questions."
@ -436,7 +439,6 @@ def test_answer_general_question_not_in_chat_history_or_retrieved_content(loaded
# ----------------------------------------------------------------------------------------------------
@pytest.mark.xfail(reason="Chat actor doesn't ask clarifying questions when context is insufficient")
@pytest.mark.chatquality
def test_ask_for_clarification_if_not_enough_context_in_question(loaded_model):
"Chat actor should ask for clarification if question cannot be answered unambiguously with the provided context"

View file

@ -15,7 +15,7 @@ from tests.helpers import ConversationFactory
SKIP_TESTS = True
pytestmark = pytest.mark.skipif(
SKIP_TESTS,
reason="The GPT4All library has some quirks that make it hard to test in CI. This causes some tests to fail. Hence, disable it in CI.",
reason="Disable in CI to avoid long test runs.",
)
fake = Faker()
@ -48,7 +48,7 @@ def create_conversation(message_list, user, agent=None):
@pytest.mark.xfail(AssertionError, reason="Chat director not capable of answering this question yet")
@pytest.mark.chatquality
@pytest.mark.django_db(transaction=True)
def test_chat_with_no_chat_history_or_retrieved_content_gpt4all(client_offline_chat):
def test_offline_chat_with_no_chat_history_or_retrieved_content(client_offline_chat):
# Act
response = client_offline_chat.get(f'/api/chat?q="Hello, my name is Testatron. Who are you?"&stream=true')
response_message = response.content.decode("utf-8")
@ -339,7 +339,7 @@ def test_answer_requires_date_aware_aggregation_across_provided_notes(client_off
# Assert
assert response.status_code == 200
assert "23" in response_message
assert "26" in response_message
# ----------------------------------------------------------------------------------------------------