Merge branch 'master' of github.com:debanjum/semantic-search into saba/configui

This commit is contained in:
Saba 2021-11-27 08:52:48 -05:00
commit 3d4471e107
8 changed files with 234 additions and 4 deletions

View file

@ -12,4 +12,5 @@ dependencies:
- pyyaml=5.*
- pytest=6.*
- pillow=8.*
- torchvision=0.*
- torchvision=0.*
- openai=0.*

View file

@ -30,3 +30,9 @@ search-type:
image:
encoder: "clip-ViT-B-32"
processor:
conversation:
openai-api-key: null
conversation-logfile: "tests/data/.conversation_logs.json"
conversation-history: null

View file

@ -1,5 +1,6 @@
# Standard Packages
import sys
import json
from typing import Optional
# External Packages
@ -10,13 +11,15 @@ from fastapi.templating import Jinja2Templates
# Internal Packages
from src.search_type import asymmetric, symmetric_ledger, image_search
from src.utils.helpers import get_from_dict
from src.utils.helpers import get_absolute_path
from src.utils.cli import cli
from src.utils.config import SearchType, SearchModels, TextSearchConfig, ImageSearchConfig, SearchConfig
from src.utils.config import SearchType, SearchModels, TextSearchConfig, ImageSearchConfig, SearchConfig, ProcessorConfig, ConversationProcessorConfig
from src.processor.conversation.gpt import converse, message_to_prompt
# Application Global State
model = SearchModels()
search_config = SearchConfig()
processor_config = ProcessorConfig()
app = FastAPI()
# app.mount("/views", StaticFiles(directory="./views"), name="views")
@ -92,6 +95,20 @@ def regenerate(t: Optional[SearchType] = None):
return {'status': 'ok', 'message': 'regeneration completed'}
@app.get('/chat')
def chat(q: str):
# Load Conversation History
conversation_history = processor_config.conversation.conversation_history
# Converse with OpenAI GPT
gpt_response = converse(q, conversation_history, api_key=processor_config.conversation.openai_api_key)
# Update Conversation History
processor_config.conversation.conversation_history = message_to_prompt(q, conversation_history, gpt_response)
return {'status': 'ok', 'response': gpt_response}
def initialize_search(config, regenerate, verbose):
model = SearchModels()
search_config = SearchConfig()
@ -119,6 +136,39 @@ def initialize_search(config, regenerate, verbose):
return model, search_config
def initialize_processor(config, verbose):
processor_config = ProcessorConfig()
# Initialize Conversation Processor
processor_config.conversation = ConversationProcessorConfig.create_from_dictionary(config, ('processor', 'conversation'), verbose)
# Load or Initialize Conversation History from Disk
conversation_logfile = processor_config.conversation.conversation_logfile
if processor_config.conversation.verbose:
print('Saving conversation logs to disk...')
if conversation_logfile.expanduser().absolute().is_file():
with open(get_absolute_path(conversation_logfile), 'r') as f:
processor_config.conversation.conversation_history = json.load(f).get('chat', '')
else:
processor_config.conversation.conversation_history = ''
return processor_config
@app.on_event('shutdown')
def shutdown_event():
if processor_config.conversation.verbose:
print('Saving conversation logs to disk...')
# Save Conversation History to Disk
conversation_logfile = get_absolute_path(processor_config.conversation.conversation_logfile)
with open(conversation_logfile, "w+", encoding='utf-8') as logfile:
json.dump({"chat": processor_config.conversation.conversation_history}, logfile)
print('Conversation logs saved to disk.')
if __name__ == '__main__':
# Load config from CLI
args = cli(sys.argv[1:])
@ -126,6 +176,9 @@ if __name__ == '__main__':
# Initialize Search from Config
model, search_config = initialize_search(args.config, args.regenerate, args.verbose)
# Initialize Processor from Config
processor_config = initialize_processor(args.config, args.verbose)
# Start Application Server
if args.socket:
uvicorn.run(app, proxy_headers=True, uds=args.socket)

View file

@ -0,0 +1,70 @@
# Standard Packages
import os
# External Packages
import openai
def understand(text, api_key=None, temperature=0.5, max_tokens=100):
"""
Understand user input using OpenAI's GPT
"""
# Initialize Variables
openai.api_key = api_key or os.getenv("OPENAI_API_KEY")
understand_primer="Extract information from each chat message\n\nremember(memory-type, data);\nmemory-type=[\"companion\", \"notes\", \"ledger\", \"image\", \"music\"]\nsearch(search-type, data);\nsearch-type=[\"google\", \"youtube\"]\ngenerate(activity);\nactivity=[\"paint\",\"write\", \"chat\"]\ntrigger-emotion(emotion);\nemotion=[\"happy\",\"confidence\",\"fear\",\"surprise\",\"sadness\",\"disgust\",\"anger\", \"curiosity\", \"calm\"]\n\nQ: How are you doing?\nA: activity(\"chat\"); trigger-emotion(\"surprise\")\nQ: Do you remember what I told you about my brother Antoine when we were at the beach?\nA: remember(\"notes\", \"Brother Antoine when we were at the beach\"); trigger-emotion(\"curiosity\");\nQ: what did we talk about last time?\nA: remember(\"notes\", \"talk last time\"); trigger-emotion(\"curiosity\");\nQ: Let's make some drawings!\nA: generate(\"paint\"); trigger-emotion(\"happy\");\nQ: Do you know anything about Lebanon?\nA: search(\"google\", \"lebanon\"); trigger-emotion(\"confidence\");\nQ: Find a video about a panda rolling in the grass\nA: search(\"youtube\",\"panda rolling in the grass\"); trigger-emotion(\"happy\"); \nQ: Tell me a scary story\nA: generate(\"write\" \"A story about some adventure\"); trigger-emotion(\"fear\");\nQ: What fiction book was I reading last week about AI starship?\nA: remember(\"notes\", \"read fiction book about AI starship last week\"); trigger-emotion(\"curiosity\");\nQ: How much did I spend at Subway for dinner last time?\nA: remember(\"ledger\", \"last Subway dinner\"); trigger-emotion(\"curiosity\");\nQ: I'm feeling sleepy\nA: activity(\"chat\"); trigger-emotion(\"calm\")\nQ: What was that popular Sri lankan song that Alex showed me recently?\nA: remember(\"music\", \"popular Sri lankan song that Alex showed recently\"); trigger-emotion(\"curiosity\"); \nQ: You're pretty funny!\nA: activity(\"chat\"); trigger-emotion(\"pride\")"
# Setup Prompt with Understand Primer
prompt = message_to_prompt(text, understand_primer, start_sequence="\nA:", restart_sequence="\nQ:")
# Get Reponse from GPT
response = openai.Completion.create(
engine="davinci",
prompt=prompt,
temperature=temperature,
max_tokens=max_tokens,
top_p=1,
frequency_penalty=0.2,
presence_penalty=0,
stop=["\n"])
# Extract, Clean Message from GPT's Response
story = response['choices'][0]['text']
return str(story)
def converse(text, conversation_history=None, api_key=None, temperature=0.9, max_tokens=150):
"""
Converse with user using OpenAI's GPT
"""
# Initialize Variables
openai.api_key = api_key or os.getenv("OPENAI_API_KEY")
start_sequence = "\nAI:"
restart_sequence = "\nHuman:"
conversation_primer = f"The following is a conversation with an AI assistant. The assistant is helpful, creative, clever, and very friendly companion.\n{restart_sequence} Hello, who are you?{start_sequence} Hi, I am an AI conversational companion created by OpenAI. How can I help you today?"
# Setup Prompt with Primer or Conversation History
prompt = message_to_prompt(text, conversation_history or conversation_primer, start_sequence=start_sequence, restart_sequence=restart_sequence)
# Get Response from GPT
response = openai.Completion.create(
engine="davinci",
prompt=prompt,
temperature=temperature,
max_tokens=max_tokens,
top_p=1,
frequency_penalty=0,
presence_penalty=0.6,
stop=["\n", " Human:", " AI:"])
# Extract, Clean Message from GPT's Response
story = response['choices'][0]['text']
return str(story).strip()
def message_to_prompt(user_message, conversation_history="", gpt_message=None, start_sequence="\nAI:", restart_sequence="\nHuman:"):
"""Create prompt for GPT from message"""
if gpt_message:
return f"{conversation_history}{restart_sequence} {user_message}{start_sequence} {gpt_message}"
else:
return f"{conversation_history}{restart_sequence} {user_message}{start_sequence}"

View file

@ -80,6 +80,15 @@ default_config = {
'image':
{
'encoder': "clip-ViT-B-32"
}
},
},
'processor':
{
'conversation':
{
'openai-api-key': "",
'conversation-logfile': ".conversation_logs.json",
'conversation-history': ""
},
}
}

View file

@ -93,3 +93,27 @@ class SearchConfig():
ledger: TextSearchConfig = None
music: TextSearchConfig = None
image: ImageSearchConfig = None
class ConversationProcessorConfig():
def __init__(self, conversation_logfile, conversation_history, openai_api_key, verbose):
self.openai_api_key = openai_api_key
self.conversation_logfile = conversation_logfile
self.conversation_history = conversation_history
self.verbose = verbose
def create_from_dictionary(config, key_tree, verbose):
conversation_config = get_from_dict(config, *key_tree)
if not conversation_config:
return None
return ConversationProcessorConfig(
openai_api_key = conversation_config['openai-api-key'],
conversation_history = '',
conversation_logfile = Path(conversation_config['conversation-logfile']),
verbose = verbose)
@dataclass
class ProcessorConfig():
conversation: ConversationProcessorConfig = None

63
tests/test_chatbot.py Normal file
View file

@ -0,0 +1,63 @@
# External Packages
import pytest
# Internal Packages
from src.processor.conversation.gpt import converse, understand, message_to_prompt
# Input your OpenAI API key to run the tests below
api_key = None
# Test
# ----------------------------------------------------------------------------------------------------
def test_message_to_understand_prompt():
# Setup
understand_primer = "Extract information from each chat message\n\nremember(memory-type, data);\nmemory-type=[\"companion\", \"notes\", \"ledger\", \"image\", \"music\"]\nsearch(search-type, data);\nsearch-type=[\"google\", \"youtube\"]\ngenerate(activity);\nactivity=[\"paint\",\"write\", \"chat\"]\ntrigger-emotion(emotion);\nemotion=[\"happy\",\"confidence\",\"fear\",\"surprise\",\"sadness\",\"disgust\",\"anger\", \"curiosity\", \"calm\"]\n\nQ: How are you doing?\nA: activity(\"chat\"); trigger-emotion(\"surprise\")\nQ: Do you remember what I told you about my brother Antoine when we were at the beach?\nA: remember(\"notes\", \"Brother Antoine when we were at the beach\"); trigger-emotion(\"curiosity\");\nQ: what did we talk about last time?\nA: remember(\"notes\", \"talk last time\"); trigger-emotion(\"curiosity\");\nQ: Let's make some drawings!\nA: generate(\"paint\"); trigger-emotion(\"happy\");\nQ: Do you know anything about Lebanon?\nA: search(\"google\", \"lebanon\"); trigger-emotion(\"confidence\");\nQ: Find a video about a panda rolling in the grass\nA: search(\"youtube\",\"panda rolling in the grass\"); trigger-emotion(\"happy\"); \nQ: Tell me a scary story\nA: generate(\"write\" \"A story about some adventure\"); trigger-emotion(\"fear\");\nQ: What fiction book was I reading last week about AI starship?\nA: remember(\"notes\", \"read fiction book about AI starship last week\"); trigger-emotion(\"curiosity\");\nQ: How much did I spend at Subway for dinner last time?\nA: remember(\"ledger\", \"last Subway dinner\"); trigger-emotion(\"curiosity\");\nQ: I'm feeling sleepy\nA: activity(\"chat\"); trigger-emotion(\"calm\")\nQ: What was that popular Sri lankan song that Alex showed me recently?\nA: remember(\"music\", \"popular Sri lankan song that Alex showed recently\"); trigger-emotion(\"curiosity\"); \nQ: You're pretty funny!\nA: activity(\"chat\"); trigger-emotion(\"pride\")"
expected_response = "Extract information from each chat message\n\nremember(memory-type, data);\nmemory-type=[\"companion\", \"notes\", \"ledger\", \"image\", \"music\"]\nsearch(search-type, data);\nsearch-type=[\"google\", \"youtube\"]\ngenerate(activity);\nactivity=[\"paint\",\"write\", \"chat\"]\ntrigger-emotion(emotion);\nemotion=[\"happy\",\"confidence\",\"fear\",\"surprise\",\"sadness\",\"disgust\",\"anger\", \"curiosity\", \"calm\"]\n\nQ: How are you doing?\nA: activity(\"chat\"); trigger-emotion(\"surprise\")\nQ: Do you remember what I told you about my brother Antoine when we were at the beach?\nA: remember(\"notes\", \"Brother Antoine when we were at the beach\"); trigger-emotion(\"curiosity\");\nQ: what did we talk about last time?\nA: remember(\"notes\", \"talk last time\"); trigger-emotion(\"curiosity\");\nQ: Let's make some drawings!\nA: generate(\"paint\"); trigger-emotion(\"happy\");\nQ: Do you know anything about Lebanon?\nA: search(\"google\", \"lebanon\"); trigger-emotion(\"confidence\");\nQ: Find a video about a panda rolling in the grass\nA: search(\"youtube\",\"panda rolling in the grass\"); trigger-emotion(\"happy\"); \nQ: Tell me a scary story\nA: generate(\"write\" \"A story about some adventure\"); trigger-emotion(\"fear\");\nQ: What fiction book was I reading last week about AI starship?\nA: remember(\"notes\", \"read fiction book about AI starship last week\"); trigger-emotion(\"curiosity\");\nQ: How much did I spend at Subway for dinner last time?\nA: remember(\"ledger\", \"last Subway dinner\"); trigger-emotion(\"curiosity\");\nQ: I'm feeling sleepy\nA: activity(\"chat\"); trigger-emotion(\"calm\")\nQ: What was that popular Sri lankan song that Alex showed me recently?\nA: remember(\"music\", \"popular Sri lankan song that Alex showed recently\"); trigger-emotion(\"curiosity\"); \nQ: You're pretty funny!\nA: activity(\"chat\"); trigger-emotion(\"pride\")\nQ: When did I last dine at Burger King?\nA:"
# Act
actual_response = message_to_prompt("When did I last dine at Burger King?", understand_primer, start_sequence="\nA:", restart_sequence="\nQ:")
# Assert
assert actual_response == expected_response
# ----------------------------------------------------------------------------------------------------
@pytest.mark.skipif(api_key is None,
reason="Set api_key variable to your OpenAI API key from https://beta.openai.com/account/api-keys")
def test_minimal_chat_with_gpt():
# Act
response = converse("What will happen when the stars go out?", api_key=api_key)
# Assert
assert len(response) > 0
# ----------------------------------------------------------------------------------------------------
@pytest.mark.skipif(api_key is None,
reason="Set api_key variable to your OpenAI API key from https://beta.openai.com/account/api-keys")
def test_chat_with_history():
# Act
start_sequence="\nAI:"
restart_sequence="\nHuman:"
conversation_primer = f"The following is a conversation with an AI assistant. The assistant is helpful, creative, clever, and very friendly companion.\n{restart_sequence} Hello, I am testatron. Who are you?{start_sequence} Hi, I am an AI conversational companion created by OpenAI. How can I help you today?"
conversation_history = conversation_primer
response = converse("Can you tell me my name?", conversation_history=conversation_history, api_key=api_key, temperature=0, max_tokens=50)
# Assert
assert len(response) > 0
assert "Testatron" in response or "testatron" in response
# ----------------------------------------------------------------------------------------------------
@pytest.mark.skipif(api_key is None,
reason="Set api_key variable to your OpenAI API key from https://beta.openai.com/account/api-keys")
def test_understand_message_using_gpt():
# Act
response = understand("When did I last dine at Subway?", api_key=api_key)
# Assert
assert len(response) > 0
assert "remember(\"ledger\", " in response

View file

@ -1,3 +1,6 @@
# External Packages
import pytest
# Internal Packages
from src.main import model
from src.search_type import image_search
@ -17,6 +20,7 @@ def test_image_search_setup(search_config):
# ----------------------------------------------------------------------------------------------------
@pytest.mark.skip(reason="results inconsistent currently")
def test_image_search(search_config):
# Arrange
model.image_search = image_search.setup(search_config.image, regenerate=False)