mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-11-23 15:38:55 +01:00
Add Script to Evaluate Khoj on Google's FRAMES benchmark (#955)
- Why We need better, automated evals to measure performance shifts of Khoj across prompt, model and capability changes. Google's FRAMES benchmark evaluates multi-step retrieval and reasoning capabilities of AI agents. It's a good starter benchmark to evaluate Khoj. - Details This PR adds an eval script to evaluate Khoj responses on the the FRAMES benchmark prompts against the ground truth provided by it. Script allows configuring sample size, batch size, sampling queries from the eval dataset. Gemini is used as an LLM Judge to auto grade Khoj responses vs ground truth data from the benchmark.
This commit is contained in:
commit
4cad96ded6
2 changed files with 209 additions and 0 deletions
|
@ -120,6 +120,8 @@ dev = [
|
|||
"black >= 23.1.0",
|
||||
"pre-commit >= 3.0.4",
|
||||
"gitpython ~= 3.1.43",
|
||||
"datasets",
|
||||
"pandas",
|
||||
]
|
||||
|
||||
[tool.hatch.version]
|
||||
|
|
207
tests/eval_frames.py
Normal file
207
tests/eval_frames.py
Normal file
|
@ -0,0 +1,207 @@
|
|||
import concurrent.futures
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import time
|
||||
from typing import Any, Dict
|
||||
|
||||
import pandas as pd
|
||||
import requests
|
||||
from datasets import load_dataset
|
||||
|
||||
from khoj.utils.helpers import timer
|
||||
|
||||
# Configure root logger
|
||||
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(message)s")
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
# Configuration
|
||||
KHOJ_URL = os.getenv("KHOJ_URL", "http://localhost:42110")
|
||||
KHOJ_CHAT_API_URL = f"{KHOJ_URL}/api/chat"
|
||||
KHOJ_API_KEY = os.getenv("KHOJ_API_KEY")
|
||||
KHOJ_MODE = os.getenv("KHOJ_MODE") # E.g research, general, notes etc.
|
||||
|
||||
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
|
||||
GEMINI_EVAL_MODEL = os.getenv("GEMINI_EVAL_MODEL", "gemini-1.5-pro-002")
|
||||
GEMINI_API_URL = (
|
||||
f"https://generativelanguage.googleapis.com/v1beta/models/{GEMINI_EVAL_MODEL}:generateContent?key={GEMINI_API_KEY}"
|
||||
)
|
||||
|
||||
SAMPLE_SIZE = os.getenv("SAMPLE_SIZE") # Number of examples to evaluate
|
||||
RANDOMIZE = os.getenv("RANDOMIZE", "false").lower() == "true" # Randomize examples
|
||||
BATCH_SIZE = int(os.getenv("BATCH_SIZE", 10)) # Number of examples to evaluate in parallel
|
||||
SLEEP_SECONDS = 1 # Delay between API calls to avoid rate limiting
|
||||
|
||||
|
||||
def load_frames_dataset():
|
||||
"""Load the FRAMES benchmark dataset from HuggingFace"""
|
||||
try:
|
||||
dataset = load_dataset("google/frames-benchmark")
|
||||
dataset = dataset.shuffle() if RANDOMIZE else dataset
|
||||
# Use test split for evaluation. Sample and shuffle dataset if configured
|
||||
return dataset["test"][: int(SAMPLE_SIZE)] if SAMPLE_SIZE else dataset["test"]
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error loading dataset: {e}")
|
||||
return None
|
||||
|
||||
|
||||
def get_agent_response(prompt: str) -> str:
|
||||
"""Get response from the Khoj API"""
|
||||
try:
|
||||
response = requests.post(
|
||||
KHOJ_CHAT_API_URL,
|
||||
headers={"Content-Type": "application/json", "Authorization": f"Bearer {KHOJ_API_KEY}"},
|
||||
json={
|
||||
"q": prompt,
|
||||
"create_new": True,
|
||||
},
|
||||
)
|
||||
response.raise_for_status()
|
||||
return response.json().get("response", "")
|
||||
except Exception as e:
|
||||
logger.error(f"Error getting agent response: {e}")
|
||||
return ""
|
||||
|
||||
|
||||
def evaluate_response(query: str, agent_response: str, ground_truth: str) -> Dict[str, Any]:
|
||||
"""Evaluate Khoj response against benchmark ground truth using Gemini"""
|
||||
evaluation_prompt = f"""
|
||||
Compare the following agent response with the ground truth answer.
|
||||
Determine if the agent response contains the key information from the ground truth.
|
||||
Focus on factual correctness rather than exact wording.
|
||||
|
||||
Query: {query}
|
||||
Agent Response: {agent_response}
|
||||
Ground Truth: {ground_truth}
|
||||
|
||||
Provide your evaluation in the following json format:
|
||||
{"explanation:" "[How you made the decision?)", "decision:" "(TRUE if response contains key information, FALSE otherwise)"}
|
||||
"""
|
||||
|
||||
try:
|
||||
response = requests.post(
|
||||
GEMINI_API_URL,
|
||||
headers={"Content-Type": "application/json", "response_mime_type": "application/json"},
|
||||
json={"contents": [{"parts": [{"text": evaluation_prompt}]}]},
|
||||
)
|
||||
response.raise_for_status()
|
||||
|
||||
# Parse evaluation response
|
||||
eval_response = json.loads(clean_json(response.json()["candidates"][0]["content"]["parts"][0]["text"]))
|
||||
if "decision" in eval_response and isinstance(eval_response["decision"], str):
|
||||
eval_response["decision"] = eval_response["decision"].upper() == "TRUE"
|
||||
# Extract decision and explanation from structured response
|
||||
return {
|
||||
"decision": eval_response.get("decision", False),
|
||||
"explanation": eval_response.get("explanation", ""),
|
||||
}
|
||||
except Exception as e:
|
||||
logger.error(f"Error in evaluation: {e}")
|
||||
return {"decision": "FALSE", "explanation": f"Evaluation failed: {str(e)}"}
|
||||
|
||||
|
||||
def process_batch(batch, counter, results, dataset_length):
|
||||
for prompt, answer, reasoning_type in batch:
|
||||
counter += 1
|
||||
logger.info(f"Processing example: {counter}/{dataset_length}")
|
||||
|
||||
# Trigger research mode if enabled
|
||||
prompt = f"/{KHOJ_MODE} {prompt}" if KHOJ_MODE else prompt
|
||||
|
||||
# Get agent response
|
||||
agent_response = get_agent_response(prompt)
|
||||
|
||||
# Evaluate response
|
||||
evaluation = evaluate_response(prompt, agent_response, answer)
|
||||
|
||||
# Store results
|
||||
results.append(
|
||||
{
|
||||
"index": counter,
|
||||
"prompt": prompt,
|
||||
"ground_truth": answer,
|
||||
"agent_response": agent_response,
|
||||
"evaluation_decision": evaluation["decision"],
|
||||
"evaluation_explanation": evaluation["explanation"],
|
||||
"reasoning_type": reasoning_type,
|
||||
}
|
||||
)
|
||||
|
||||
# Color the decision based on its value
|
||||
decision = evaluation["decision"]
|
||||
decision_color = "green" if decision == True else "red"
|
||||
colored_decision = color_text(str(decision), decision_color)
|
||||
logger.info(
|
||||
f'Decision: {colored_decision}\nQuestion: {prompt}\nExpected Answer: {answer}\nAgent Answer: {agent_response}\nExplanation: {evaluation["explanation"]}\n'
|
||||
)
|
||||
|
||||
time.sleep(SLEEP_SECONDS) # Rate limiting
|
||||
|
||||
|
||||
def color_text(text, color):
|
||||
colors = {"red": "\033[91m", "green": "\033[92m", "reset": "\033[0m"}
|
||||
return f"{colors[color]}{text}{colors['reset']}"
|
||||
|
||||
|
||||
def clean_json(response: str):
|
||||
"""Remove any markdown json codeblock and newline formatting if present. Useful for non schema enforceable models"""
|
||||
return response.strip().replace("\n", "").removeprefix("```json").removesuffix("```")
|
||||
|
||||
|
||||
def main():
|
||||
# Load dataset
|
||||
with timer("Loaded dataset in", logger):
|
||||
dataset = load_frames_dataset()
|
||||
if dataset is None:
|
||||
return
|
||||
|
||||
# Initialize variables
|
||||
counter = 0
|
||||
results = []
|
||||
dataset_length = len(dataset["Prompt"])
|
||||
|
||||
# Process examples in batches
|
||||
with concurrent.futures.ThreadPoolExecutor() as executor:
|
||||
futures = []
|
||||
for i in range(0, dataset_length, BATCH_SIZE):
|
||||
batch = zip(
|
||||
dataset["Prompt"][i : i + BATCH_SIZE],
|
||||
dataset["Answer"][i : i + BATCH_SIZE],
|
||||
dataset["reasoning_types"][i : i + BATCH_SIZE],
|
||||
)
|
||||
futures.append(executor.submit(process_batch, batch, counter, results, dataset_length))
|
||||
|
||||
# Wait for all futures to complete
|
||||
concurrent.futures.wait(futures)
|
||||
|
||||
# Calculate metrics
|
||||
df = pd.DataFrame(results)
|
||||
accuracy = (df["evaluation_decision"] == True).mean()
|
||||
|
||||
# Calculate accuracy by reasoning type
|
||||
reasoning_type_accuracy = df.groupby("reasoning_type")["evaluation_decision"].apply(lambda x: (x == True).mean())
|
||||
|
||||
# Save results
|
||||
df.to_csv("frames_evaluation_results.csv", index=False)
|
||||
|
||||
# Print summary
|
||||
logger.info(f"\nOverall Accuracy: {accuracy:.2%}")
|
||||
logger.info("\nAccuracy by Reasoning Type:")
|
||||
logger.info(reasoning_type_accuracy)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
"""
|
||||
Evaluate Khoj on the Google FRAMES benchmark.
|
||||
Response are evaluated by GEMINI_EVAL_MODEL (default: gemini-pro-1.5-002).
|
||||
|
||||
Khoj should be running at KHOJ_URL, default at http://localhost:42110.
|
||||
The Gemini judge model is accessed via the Gemini API with your GEMINI_API_KEY.
|
||||
To evaluate Khoj in research mode, set the KHOJ_MODE environment variable to "research".
|
||||
|
||||
Run the script using the following command:
|
||||
KHOJ_MODE="research" GEMINI_API_KEY="<your_gemini_api_key>" python eval_frames.py
|
||||
"""
|
||||
with timer("Ran eval in", logger):
|
||||
main()
|
Loading…
Reference in a new issue