Enable Semantic Search on Images

This commit is contained in:
Debanjum Singh Solanky 2021-08-22 21:00:54 -07:00
parent fd217fe8b7
commit 4daeddbbda
5 changed files with 104 additions and 28 deletions

View file

@ -10,4 +10,6 @@ dependencies:
- fastapi
- uvicorn
- pyyaml
- pytest
- pytest
- pillow
- torchvision

View file

@ -8,7 +8,7 @@ import uvicorn
from fastapi import FastAPI
# Internal Packages
from search_type import asymmetric, symmetric_ledger
from search_type import asymmetric, symmetric_ledger, image_search
from utils.helpers import get_from_dict
from utils.cli import cli
@ -50,6 +50,22 @@ def search(q: str, n: Optional[int] = 5, t: Optional[str] = None):
# collate and return results
return symmetric_ledger.collate_results(hits, transactions, results_count)
if (t == 'image' or t == None) and image_search_enabled:
# query transactions
hits = image_search.query_images(
user_query,
image_embeddings,
image_encoder,
results_count,
args.verbose)
# collate and return results
return image_search.collate_results(
hits,
image_names,
image_config['input-directory'],
results_count)
else:
return {}
@ -80,6 +96,16 @@ def regenerate(t: Optional[str] = None):
regenerate=True,
verbose=args.verbose)
if (t == 'image' or t == None) and image_search_enabled:
# Extract Images, Generate Embeddings
global image_embeddings
global image_names
image_names, image_embeddings, _ = image_search.setup(
pathlib.Path(image_config['input-directory']),
pathlib.Path(image_config['embeddings-file']),
regenerate=True,
verbose=args.verbose)
return {'status': 'ok', 'message': 'regeneration completed'}
@ -112,5 +138,16 @@ if __name__ == '__main__':
args.regenerate,
args.verbose)
# Initialize Image Search
image_config = get_from_dict(args.config, 'content-type', 'image')
image_search_enabled = False
if image_config and 'input-directory' in image_config:
image_search_enabled = True
image_names, image_embeddings, image_encoder = image_search.setup(
pathlib.Path(image_config['input-directory']),
pathlib.Path(image_config['embeddings-file']),
args.regenerate,
args.verbose)
# Start Application Server
uvicorn.run(app)

View file

@ -1,31 +1,38 @@
from sentence_transformers import SentenceTransformer, util
from PIL import Image
import torch
# Standard Packages
import argparse
import pathlib
import copy
# External Packages
from sentence_transformers import SentenceTransformer, util
from PIL import Image
import torch
# Internal Packages
from utils.helpers import get_absolute_path, resolve_absolute_path
def initialize_model():
# Initialize Model
torch.set_num_threads(4)
top_k = 3
model = SentenceTransformer('clip-ViT-B-32') #Load the CLIP model
return model, top_k
return model
def extract_entries(image_directory, verbose=False):
image_directory = resolve_absolute_path(image_directory, strict=True)
image_names = list(image_directory.glob('*.jpg'))
if verbose:
print(f'Found {len(image_names)} images in {image_directory}')
return image_names
def compute_embeddings(image_names, model, embeddings_file, verbose=False):
def compute_embeddings(image_names, model, embeddings_file, regenerate=False, verbose=False):
"Compute (and Save) Embeddings or Load Pre-Computed Embeddings"
image_embeddings = None
# Load pre-computed embeddings from file if exists
if embeddings_file.exists():
if embeddings_file.exists() and not regenerate:
image_embeddings = torch.load(embeddings_file)
if verbose:
print(f"Loaded pre-computed embeddings from {embeddings_file}")
@ -46,10 +53,10 @@ def compute_embeddings(image_names, model, embeddings_file, verbose=False):
return image_embeddings
def search(query, image_embeddings, model, count=3, verbose=False):
def query_images(query, image_embeddings, model, count=3, verbose=False):
# Set query to image content if query is a filepath
if pathlib.Path(query).expanduser().is_file():
query_imagepath = pathlib.Path(query).expanduser().resolve(strict=True)
if pathlib.Path(query).is_file():
query_imagepath = resolve_absolute_path(pathlib.Path(query), strict=True)
query = copy.deepcopy(Image.open(query_imagepath))
if verbose:
print(f"Find Images similar to Image at {query_imagepath}")
@ -68,6 +75,8 @@ def search(query, image_embeddings, model, count=3, verbose=False):
def render_results(hits, image_names, image_directory, count):
image_directory = resolve_absolute_path(image_directory, strict=True)
for hit in hits[:count]:
print(image_names[hit['corpus_id']])
image_path = image_directory.joinpath(image_names[hit['corpus_id']])
@ -75,28 +84,44 @@ def render_results(hits, image_names, image_directory, count):
img.show()
def collate_results(hits, image_names, image_directory, count=5):
image_directory = resolve_absolute_path(image_directory, strict=True)
return [
{
"Entry": image_directory.joinpath(image_names[hit['corpus_id']]),
"Score": f"{hit['score']:.3f}"
}
for hit
in hits[0:count]]
def setup(image_directory, embeddings_file, regenerate=False, verbose=False):
# Initialize Model
model = initialize_model()
# Extract Entries
image_directory = resolve_absolute_path(image_directory, strict=True)
image_names = extract_entries(image_directory, verbose)
# Compute or Load Embeddings
embeddings_file = resolve_absolute_path(embeddings_file)
image_embeddings = compute_embeddings(image_names, model, embeddings_file, regenerate=regenerate, verbose=verbose)
return image_names, image_embeddings, model
if __name__ == '__main__':
# Setup Argument Parser
parser = argparse.ArgumentParser(description="Semantic Search on Images")
parser.add_argument('--image-directory', '-i', required=True, type=pathlib.Path, help="Image directory to query")
parser.add_argument('--embeddings-file', '-e', default='embeddings.pt', type=pathlib.Path, help="File to save/load model embeddings to/from. Default: ./embeddings.pt")
parser.add_argument('--embeddings-file', '-e', default='image_embeddings.pt', type=pathlib.Path, help="File to save/load model embeddings to/from. Default: ./embeddings.pt")
parser.add_argument('--regenerate', action='store_true', default=False, help="Regenerate embeddings of Images in Image Directory . Default: false")
parser.add_argument('--results-count', '-n', default=5, type=int, help="Number of results to render. Default: 5")
parser.add_argument('--interactive', action='store_true', default=False, help="Interactive mode allows user to run queries on the model. Default: true")
parser.add_argument('--verbose', action='store_true', default=False, help="Show verbose conversion logs. Default: false")
args = parser.parse_args()
# Resolve file, directory paths in args to absolute paths
embeddings_file = args.embeddings_file.expanduser().resolve()
image_directory = args.image_directory.expanduser().resolve(strict=True)
# Initialize Model
model, count = initialize_model()
# Extract Entries
image_names = extract_entries(image_directory, args.verbose)
# Compute or Load Embeddings
image_embeddings = compute_embeddings(image_names, model, embeddings_file, args.verbose)
image_names, image_embeddings, model = setup(args.image_directory, args.embeddings_file, regenerate=args.regenerate)
# Run User Queries on Entries in Interactive Mode
while args.interactive:
@ -105,8 +130,8 @@ if __name__ == '__main__':
if user_query == "exit":
exit(0)
# query notes
hits = search(user_query, image_embeddings, model, args.results_count, args.verbose)
# query images
hits = query_images(user_query, image_embeddings, model, args.results_count, args.verbose)
# render results
render_results(hits, image_names, image_directory, count=args.results_count)
render_results(hits, image_names, args.image_directory, count=args.results_count)

View file

@ -53,6 +53,10 @@ default_config = {
{
'compressed-jsonl': '.transactions.jsonl.gz',
'embeddings-file': '.transaction_embeddings.pt'
},
'image':
{
'embeddings-file': '.image_embeddings.pt'
}
},
'search-type':
@ -61,6 +65,10 @@ default_config = {
{
'encoder': "sentence-transformers/msmarco-MiniLM-L-6-v3",
'cross-encoder': "cross-encoder/ms-marco-MiniLM-L-6-v2"
},
'image':
{
'encoder': "clip-ViT-B-32"
}
}
}

View file

@ -9,6 +9,10 @@ def get_absolute_path(filepath):
return str(pathlib.Path(filepath).expanduser().absolute())
def resolve_absolute_path(filepath, strict=False):
return pathlib.Path(filepath).expanduser().absolute().resolve(strict=strict)
def get_from_dict(dictionary, *args):
'''null-aware get from a nested dictionary
Returns: dictionary[args[0]][args[1]]... or None if any keys missing'''