mirror of
https://github.com/khoj-ai/khoj.git
synced 2024-11-23 15:38:55 +01:00
Fix image_metadata argument ordering bug. Add E2E image search test
- Image search test seems a little flaky - Interchanged argument was causing inaccurate results earlier
This commit is contained in:
parent
d5597442f4
commit
58bb420f69
5 changed files with 57 additions and 15 deletions
|
@ -18,8 +18,8 @@ from utils.config import ImageSearchModel, ImageSearchConfig
|
|||
def initialize_model():
|
||||
# Initialize Model
|
||||
torch.set_num_threads(4)
|
||||
model = SentenceTransformer('clip-ViT-B-32') #Load the CLIP model
|
||||
return model
|
||||
encoder = SentenceTransformer('clip-ViT-B-32') #Load the CLIP model
|
||||
return encoder
|
||||
|
||||
|
||||
def extract_entries(image_directory, verbose=0):
|
||||
|
@ -32,16 +32,16 @@ def extract_entries(image_directory, verbose=0):
|
|||
return image_names
|
||||
|
||||
|
||||
def compute_embeddings(image_names, model, embeddings_file, batch_size=50, regenerate=False, use_xmp_metadata=False, verbose=0):
|
||||
def compute_embeddings(image_names, encoder, embeddings_file, batch_size=50, use_xmp_metadata=False, regenerate=False, verbose=0):
|
||||
"Compute (and Save) Embeddings or Load Pre-Computed Embeddings"
|
||||
|
||||
image_embeddings = compute_image_embeddings(image_names, model, embeddings_file, batch_size, regenerate, verbose)
|
||||
image_metadata_embeddings = compute_metadata_embeddings(image_names, model, embeddings_file, batch_size, use_xmp_metadata, regenerate, verbose)
|
||||
image_embeddings = compute_image_embeddings(image_names, encoder, embeddings_file, batch_size, regenerate, verbose)
|
||||
image_metadata_embeddings = compute_metadata_embeddings(image_names, encoder, embeddings_file, batch_size, use_xmp_metadata, regenerate, verbose)
|
||||
|
||||
return image_embeddings, image_metadata_embeddings
|
||||
|
||||
|
||||
def compute_image_embeddings(image_names, model, embeddings_file, batch_size=50, regenerate=False, verbose=0):
|
||||
def compute_image_embeddings(image_names, encoder, embeddings_file, batch_size=50, regenerate=False, verbose=0):
|
||||
image_embeddings = None
|
||||
|
||||
# Load pre-computed image embeddings from file if exists
|
||||
|
@ -55,7 +55,7 @@ def compute_image_embeddings(image_names, model, embeddings_file, batch_size=50,
|
|||
image_embeddings = []
|
||||
for index in trange(0, len(image_names), batch_size):
|
||||
images = [Image.open(image_name) for image_name in image_names[index:index+batch_size]]
|
||||
image_embeddings += model.encode(images, convert_to_tensor=True, batch_size=batch_size)
|
||||
image_embeddings += encoder.encode(images, convert_to_tensor=True, batch_size=batch_size)
|
||||
torch.save(image_embeddings, embeddings_file)
|
||||
if verbose > 0:
|
||||
print(f"Saved computed embeddings to {embeddings_file}")
|
||||
|
@ -63,7 +63,7 @@ def compute_image_embeddings(image_names, model, embeddings_file, batch_size=50,
|
|||
return image_embeddings
|
||||
|
||||
|
||||
def compute_metadata_embeddings(image_names, model, embeddings_file, batch_size=50, regenerate=False, use_xmp_metadata=False, verbose=0):
|
||||
def compute_metadata_embeddings(image_names, encoder, embeddings_file, batch_size=50, use_xmp_metadata=False, regenerate=False, verbose=0):
|
||||
image_metadata_embeddings = None
|
||||
|
||||
# Load pre-computed image metadata embedding file if exists
|
||||
|
@ -77,7 +77,7 @@ def compute_metadata_embeddings(image_names, model, embeddings_file, batch_size=
|
|||
image_metadata_embeddings = []
|
||||
for index in trange(0, len(image_names), batch_size):
|
||||
image_metadata = [extract_metadata(image_name, verbose) for image_name in image_names[index:index+batch_size]]
|
||||
image_metadata_embeddings += model.encode(image_metadata, convert_to_tensor=True, batch_size=batch_size)
|
||||
image_metadata_embeddings += encoder.encode(image_metadata, convert_to_tensor=True, batch_size=batch_size)
|
||||
torch.save(image_metadata_embeddings, f"{embeddings_file}_metadata")
|
||||
if verbose > 0:
|
||||
print(f"Saved computed metadata embeddings to {embeddings_file}_metadata")
|
||||
|
@ -155,17 +155,17 @@ def collate_results(hits, image_names, image_directory, count=5):
|
|||
|
||||
def setup(config: ImageSearchConfig, regenerate: bool) -> ImageSearchModel:
|
||||
# Initialize Model
|
||||
model = initialize_model()
|
||||
encoder = initialize_model()
|
||||
|
||||
# Extract Entries
|
||||
image_directory = resolve_absolute_path(config.input_directory, strict=True)
|
||||
image_names = extract_entries(config.input_directory, config.verbose)
|
||||
image_names = extract_entries(image_directory, config.verbose)
|
||||
|
||||
# Compute or Load Embeddings
|
||||
embeddings_file = resolve_absolute_path(config.embeddings_file)
|
||||
image_embeddings, image_metadata_embeddings = compute_embeddings(
|
||||
image_names,
|
||||
model,
|
||||
encoder,
|
||||
embeddings_file,
|
||||
batch_size=config.batch_size,
|
||||
regenerate=regenerate,
|
||||
|
@ -175,7 +175,7 @@ def setup(config: ImageSearchConfig, regenerate: bool) -> ImageSearchModel:
|
|||
return ImageSearchModel(image_names,
|
||||
image_embeddings,
|
||||
image_metadata_embeddings,
|
||||
model,
|
||||
encoder,
|
||||
config.verbose)
|
||||
|
||||
|
||||
|
|
BIN
src/tests/data/guineapig_grass.jpg
Normal file
BIN
src/tests/data/guineapig_grass.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 170 KiB |
BIN
src/tests/data/horse_dog.jpg
Normal file
BIN
src/tests/data/horse_dog.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 330 KiB |
BIN
src/tests/data/kitten_park.jpg
Normal file
BIN
src/tests/data/kitten_park.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 268 KiB |
|
@ -7,8 +7,9 @@ from fastapi.testclient import TestClient
|
|||
|
||||
# Internal Packages
|
||||
from main import app, search_config, model
|
||||
from search_type import asymmetric
|
||||
from utils.config import SearchConfig, TextSearchConfig
|
||||
from search_type import asymmetric, image_search
|
||||
from utils.config import SearchConfig, TextSearchConfig, ImageSearchConfig
|
||||
from utils.helpers import resolve_absolute_path
|
||||
|
||||
|
||||
# Arrange
|
||||
|
@ -91,6 +92,47 @@ def test_notes_search():
|
|||
assert "Semantic Search via Emacs" in search_result
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def test_image_search():
|
||||
# Arrange
|
||||
search_config = SearchConfig()
|
||||
search_config.image = ImageSearchConfig(
|
||||
input_directory = Path('tests/data'),
|
||||
embeddings_file = Path('tests/data/.image_embeddings.pt'),
|
||||
batch_size = 10,
|
||||
use_xmp_metadata = False,
|
||||
verbose = 2)
|
||||
|
||||
# Act
|
||||
model.image_search = image_search.setup(search_config.image, regenerate=True)
|
||||
|
||||
# Assert
|
||||
assert len(model.image_search.image_names) == 3
|
||||
assert len(model.image_search.image_embeddings) == 3
|
||||
|
||||
# Arrange
|
||||
for query, expected_image_name in [("kitten in a park", "kitten_park.jpg"),
|
||||
("horse and dog in a farm", "horse_dog.jpg"),
|
||||
("A guinea pig eating grass", "guineapig_grass.jpg")]:
|
||||
# Act
|
||||
hits = image_search.query(
|
||||
query,
|
||||
count = 1,
|
||||
model = model.image_search)
|
||||
|
||||
results = image_search.collate_results(
|
||||
hits,
|
||||
model.image_search.image_names,
|
||||
search_config.image.input_directory,
|
||||
count=1)
|
||||
|
||||
actual_image = results[0]["Entry"]
|
||||
expected_image = resolve_absolute_path(search_config.image.input_directory.joinpath(expected_image_name))
|
||||
|
||||
# Assert
|
||||
assert expected_image == actual_image
|
||||
|
||||
|
||||
# ----------------------------------------------------------------------------------------------------
|
||||
def test_notes_regenerate():
|
||||
# Arrange
|
||||
|
|
Loading…
Reference in a new issue