Use verbosity level instead of bool across application

For consistent, more granular verbosity controls across app
Allows user to increase verbosity by passing -vvv flags passed to main.py
This commit is contained in:
Debanjum Singh Solanky 2021-08-16 17:15:41 -07:00
parent adbf157deb
commit 66238004d8
3 changed files with 13 additions and 13 deletions

View file

@ -37,9 +37,9 @@ def search(q: str, n: Optional[int] = 5, t: Optional[str] = 'notes'):
if __name__ == '__main__':
# Setup Argument Parser
parser = argparse.ArgumentParser(description="Expose API for Semantic Search")
parser.add_argument('--compressed-jsonl', '-j', required=True, type=pathlib.Path, help="Compressed JSONL formatted notes file to compute embeddings from")
parser.add_argument('--embeddings', '-e', required=True, type=pathlib.Path, help="File to save/load model embeddings to/from")
parser.add_argument('--verbose', action='store_true', default=False, help="Show verbose conversion logs. Default: false")
parser.add_argument('--compressed-jsonl', '-j', type=pathlib.Path, default=pathlib.Path(".notes.jsonl.gz"), help="Compressed JSONL formatted notes file to compute embeddings from")
parser.add_argument('--embeddings', '-e', type=pathlib.Path, default=pathlib.Path(".notes_embeddings.pt"), help="File to save/load model embeddings to/from")
parser.add_argument('--verbose', action='count', help="Show verbose conversion logs. Default: 0")
args = parser.parse_args()
# Initialize Model

View file

@ -11,9 +11,9 @@ import gzip
# Define Functions
def org_to_jsonl(org_files, org_file_filter, output_path, verbose=False):
def org_to_jsonl(org_files, org_file_filter, output_path, verbose=0):
# Get Org Files to Process
org_files = get_org_files(args.input_files, args.input_filter)
org_files = get_org_files(args.input_files, args.input_filter, verbose)
# Extract Entries from specified Org files
entries = extract_org_entries(org_files)
@ -59,7 +59,7 @@ def load_jsonl(input_path, verbose=0):
return data
def get_org_files(org_files=None, org_file_filter=None):
def get_org_files(org_files=None, org_file_filter=None, verbose=0):
"Get Org files to process"
absolute_org_files, filtered_org_files = set(), set()
if org_files:
@ -75,7 +75,7 @@ def get_org_files(org_files=None, org_file_filter=None):
if any(files_with_non_org_extensions):
print(f"[Warning] There maybe non org-mode files in the input set: {files_with_non_org_extensions}")
if args.verbose:
if args.verbose > 0:
print(f'Processing files: {all_org_files}')
return all_org_files

View file

@ -20,7 +20,7 @@ def initialize_model():
return bi_encoder, cross_encoder, top_k
def extract_entries(notesfile, verbose=False):
def extract_entries(notesfile, verbose=0):
"Load entries from compressed jsonl"
entries = []
with gzip.open(get_absolute_path(notesfile), 'rt', encoding='utf8') as jsonl:
@ -34,24 +34,24 @@ def extract_entries(notesfile, verbose=False):
note_string = f'{note["Title"]}\t{note["Tags"] if "Tags" in note else ""}\n{note["Body"] if "Body" in note else ""}'
entries.extend([note_string])
if verbose:
if verbose > 0:
print(f"Loaded {len(entries)} entries from {notesfile}")
return entries
def compute_embeddings(entries, bi_encoder, embeddings_file, regenerate=False, verbose=False):
def compute_embeddings(entries, bi_encoder, embeddings_file, regenerate=False, verbose=0):
"Compute (and Save) Embeddings or Load Pre-Computed Embeddings"
# Load pre-computed embeddings from file if exists
if embeddings_file.exists() and not regenerate:
corpus_embeddings = torch.load(get_absolute_path(embeddings_file))
if verbose:
if verbose > 0:
print(f"Loaded embeddings from {embeddings_file}")
else: # Else compute the corpus_embeddings from scratch, which can take a while
corpus_embeddings = bi_encoder.encode(entries, convert_to_tensor=True, show_progress_bar=True)
torch.save(corpus_embeddings, get_absolute_path(embeddings_file))
if verbose:
if verbose > 0:
print(f"Computed embeddings and save them to {embeddings_file}")
return corpus_embeddings
@ -147,7 +147,7 @@ if __name__ == '__main__':
parser.add_argument('--embeddings', '-e', required=True, type=pathlib.Path, help="File to save/load model embeddings to/from")
parser.add_argument('--results-count', '-n', default=5, type=int, help="Number of results to render. Default: 5")
parser.add_argument('--interactive', action='store_true', default=False, help="Interactive mode allows user to run queries on the model. Default: true")
parser.add_argument('--verbose', action='store_true', default=False, help="Show verbose conversion logs. Default: false")
parser.add_argument('--verbose', action='count', help="Show verbose conversion logs. Default: 0")
args = parser.parse_args()
# Initialize Model